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1. What is model comparison?
2. The Bayesian model comparison framework
3. Cosmological applications (curvature, inflation)
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Bayes in the sky

Review of Bayesian methods in cosmology: Trotta (2008)
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Model comparison: how many sources?

Feroz and Hobson 
(2007) Signal + Noise
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Feroz and Hobson 
(2007) Signal: 8 sources

Model comparison: how many sources?
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Model comparison: 
evidence for new physics?

“Look Elsewhere” effect - see Eilam Gross’ talk
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Cosmological model comparison

• Is the spectrum of primordial fluctuations 
scale-invariant (n = 1)?

• Model comparison: 
n = 1 vs n ≠ 1 (with inflation-motivated 
prior)

• Results: 
n ≠ 1 favoured with odds of 17:1  
(Trotta 2007)
n ≠ 1 favoured with odds of 15:1  
(Kunz, Trotta & Parkinson 2007)
n ≠ 1 favoured with odds of 7:1  
(Parkinson 2007 et al 2006)
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Large scale CMB anomalies

Copi et al (2010)
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The “SH” initials of Stephen Hawking are shown in 
the ILC sky map.

WMAP team
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WMAP 7-years temperature power spectrum

Multipole moment ell
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Best-fit 
6-parameters 

ΛCDM 
concordance 

model

Jarosik et al 
(2010)

“Cosmic variance”
= 

sample variance
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Additional data from SNIa and BAO

Percival et al (2006)

288 SNIa
FwCDM

open, no DE
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Putting it all together...
precision cosmology! 

• Combined cosmological constraints on matter and dark energy content:

Assuming Λ Assuming flatness

CMB

CMB
BAO

BAO

SNIa

SNIa

Combined

Combined

March, RT et al (2011)
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The Bayesian framework 
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P (θ|d, I) = P (d|θ,I)P (θ|I)
P (d|I)

For parameter inference it is sufficient to 
consider

P (θ|d, I) ∝ P (d|θ, I)P (θ|I)

posterior ∝ likelihood× prior
prior

posterior

likelihood

θ
Pr

o
b
ab
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ty

posterior likelihood prior

evidence 

θ: parameters
d: data
I: any other external information, 
or the assumed model

Bayes’ Theorem: 
The Equation of Knowledge
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The 3 levels of inference
LEVEL 1 

I have selected a model M
and prior P(θ|M)

LEVEL 2 
Actually, there are several 

possible models: M0, M1,...

Parameter inference
(assumes M is the true 

model)

Model comparison
What is the relative 

plausibility of M0, M1,... 
in light of the data?

odds = P(M0|d)
P(M1|d)

LEVEL 3 
None of the models 
is clearly the best

Model averaging
What is the inference on 

the parameters 
accounting for model 

uncertainty?

P (θ|d) =
�

i P (Mi|d)P (θ|d, Mi)
P (θ|d, M) = P (d|θ,M)P (θ|M)

P (d|M)
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The many uses of Bayesian model 
comparison

Many scientific questions are of 
the model comparison type

ASTROPHYSICS

Exoplanets detection

Is there a line in this spectrum?

Is there a source in this image?

Cross-matching of sources

COSMOLOGY
Is the Universe flat?

Does dark energy evolve?
Are there anomalies in the CMB?
Which inflationary model is best?

Is there evidence for modified gravity?
Are the initial conditions adiabatic?

ASTROPARTICLE
Gravitational waves detection
Do cosmic rays correlate with 

AGNs? 
Dark matter signals
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Level 2: model comparison

Bayesian evidence or model likelihood

P (d|M) =
�
Ω dθP (d|θ, M)P (θ|M)

The evidence: 

The model’s posterior:

P (M |d) = P (d|M)P (M)
P (d)

When comparing two models:

P (M0|d)
P (M1|d) = P (d|M0)

P (d|M1)
P (M0)
P (M1)

Posterior odds = Bayes factor × prior odds

The Bayes factor:

P (θ|d, M) = P (d|θ,M)P (θ|M)
P (d|M)

B01 ≡ P (d|M0)
P (d|M1)
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Scale for the strength of evidence

• A (slightly modified) Jeffreys’ scale to assess the strength of evidence 
(Notice: this is empirically calibrated!)

|lnB| relative odds favoured model’s 
probability Interpretation

< 1.0 < 3:1 < 0.750 not worth 
mentioning 

< 2.5 < 12:1 0.923 weak

< 5.0 < 150:1 0.993 moderate

> 5.0 > 150:1 > 0.993 strong
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An in-built Occam’s razor

• Bayes factor balances quality of fit vs extra model complexity. 

• It rewards highly predictive models, penalizing “wasted” parameter space 

Δθ

δθ

Prior

Likelihood

“Occam’s 
factor”

θ̂

P (d|M) =�
dθL(θ)P (θ|M)

≈ L(θ̂)δθP (θ̂)
≈ δθ

∆θ L(θ̂)

Quality of 
fit
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The evidence as predictive probability

• The evidence can be understood as a function of d to give the predictive probability 
under the model M: 

More complex model M1

Simpler model M0

P(d|M)

data d
Observed value dobs

19Tuesday, 31 May 2011



Model comparison for nested models

• This happens often in practice: 
we have a more complex 
model, M1 with prior P(θ|M1), 
which reduces to a simpler 
model (M0) for a certain value of 
the parameter, 
e.g. θ = θ* = 0 (nested models)

• Is the extra complexity of M1 

warranted by the data?  

Δθ

δθ

Prior

Likelihood

θ* = 0 θ̂
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Δθ

δθ

Prior

Likelihood

θ* = 0 θ̂

Define: λ ≡ θ̂−θ�

δθ

For “informative” data: 

lnB01 ≈ ln ∆θ
δθ −

λ2

2

“wasted” 
parameter space
(favours simpler 

model)

mismatch of 
prediction with 
observed data 
(favours more 

complex model)

Model comparison for nested models
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The rough guide to model comparison
wider prior

I10 ≡ log10
∆θ
δθ

Trotta 
(2007)
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About frequentist hypothesis testing

• Warning: frequentist hypothesis testing cannot be interpreted as a statement 
about the probability of the hypothesis! 

• Example: to reject the null hypothesis H0: θ = 0, draw n normally distributed points 
(with known variance σ2). The χ2 is distributed as a chi-square distribution with (n-1) 
degrees of freedom (dof). Pick a significance level α (or p-value, e.g. α = 0.05). If P(χ2  

> χ2obs) < α reject the null hypothesis.

• This is a statement about the probability of observing data as extreme or more 
extreme than have been measured assuming the null hypothesis is correct.

• It is not a statement about the probability of the null hypothesis itself and cannot 
be interpreted as such! (or you’ll make gross mistakes)  

• The use of p-values implies that a hypothesis that may be true can be rejected 
because it has not predicted observable results that have not actually occurred. 
(Jeffreys, 1961)
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Assessing hypotheses

• The fundamental mistake is to confuse: 

P(data|hypothesis)      ≠         P(hypothesis|data)

p-value, frequentist
Assumes hypothesis to be 
true. Rejected if data 
improbable under the null
(so what?)

Requires Bayes’ Theorem
This is typically the 
question we are 
interested in!

Highly recommended: Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)
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Assessing hypotheses

P(data|hypothesis) ≠ P(hypothesis|data)

Example:

Hypothesis (H): is a random person female (H=F or H=M)?

Observation (data): is the person pregnant? (D = Y) 

Caution:        P(D=Y|H=F) = 0.03 
                     but 
                     P(H=F|D=Y) >> 0.03
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Prior-free evidence bounds

• What if we do not know how to set the prior?

• Then our physical theory is probably not good enough! (e.g., dark energy, inflationary 
potentials) 

• E.g.: for nested models, we can still choose a prior that will maximise the support for 
the more complex model: 

wider prior (for fixed data)

maximum 
evidence for 

Model 1 
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Maximum evidence for a detection

• The absolute upper bound: put all prior mass for the alternative onto the observed 
maximum likelihood value. Then

• More reasonable class of priors: symmetric and unimodal around Ψ=0, then 
(α = significance level)

If the upper bound is small, no other choice of prior will make the extra 
parameter significant.

B < exp(−χ2/2)

B < −1
exp(1)α ln α

Gordon & Trotta (2007)
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How to interpret the “number of sigma’s”

α sigma
Absolute bound 

on lnB (B)

“Reasonable” 
bound on lnB

(B)

0.05 2.0
2.0
(7:1)
weak

0.9
(3:1)

undecided

0.003 3.0
4.5

(90:1)
moderate

3.0
(21:1)

moderate

0.0003 3.6
6.48

(650:1)
strong

5.0 
(150:1)
strong
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Numerical evaluation of the Bayesian evidence
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Computing the evidence 

• Usually a computational demanding multi-dimensional integral!

• Several numerical/semi-analytical techniques available:

• Thermodynamic integration or Population Monte Carlo 

• Laplace approximation: approximate the likelihood to second order around 
maximum gives Gaussian integrals (for normal prior). Can be inaccurate.

• Savage-Dickey density ratio: good for nested models, gives the Bayes factor

• Nested sampling: clever & efficient, can be used generally 

P (d|M) =
�
Ω dθP (d|θ, M)P (θ|M)Evidence:

Bayes factor: B01 ≡ P (d|M0)
P (d|M1)
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The “Nested Sampling” algorithm

x1

L(x)

0

1

2
!

!

Figure 1: **** Possibly change fig to the one in Feroz et al**** Schematic illustration of the nested
sampling algorithm for the computation of the Bayesian evidence. Levels of constant likelihood in
the two–dimensional parameter space shown at the top right are mapped onto elements of increasing
likelihood as a function of the enclosed prior volume X , with p(m)dm = dX . The evidence is then
computed by integrating the one–dimensional function L(X) from 0 to 1 (from [?])

.

scans). Therefore we adopt NS as an efficient sampler of the posterior. We have compared

the results with our MCMC algorithm and found that they are identical (up to numerical

noise).

2.4 Statistical measures

From the above sequence of samples, obtaining Monte Carlo estimates of expectations for

any function of the parameters becomes a trivial task. For example, the posterior mean is

given by (where 〈·〉 denotes the expectation value with respect to the posterior)

〈m〉 ≈
∫

p(m|d)mdm =
1

M

M−1∑

t=0

m(t), (2.8)

where the equality with the mean of the samples follows because the samples m(t) are gen-

erated from the posterior by construction. In general, one can easily obtain the expectation

value of any function of the parameters f(m) as

〈f(m)〉 ≈
1

M

M−1∑

t=0

f(m(t)). (2.9)

It is usually interesting to summarize the results of the inference by giving the 1–dimensional

marginal probability for the j–th element of m, mj. Taking without loss of generality j = 1

and a parameter space of dimensionality N , the marginal posterior for parameter m1 is

– 6 –

Feroz et al (2008), arxiv: 0807.4512 Trotta et al (2008), arxiv: 0809.3792 

(animation courtesy of David Parkinson)

X(λ) =
�
L(θ)>λ P (θ)dθ

An algorithm to simplify the computation of the Bayesian evidence (Skilling, 2006):

P (d) =
�

dθL(θ)P (θ) =
� 1
0 X(λ)dλ
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The MultiNest algorithm
• MultiNest: Also an extremely efficient sampler for multi-modal likelihoods! 

Feroz & Hobson (2007), RT et al (2008), Feroz et al (2008)

Target likelihood Sampled likelihood 
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Computation of the evidence with Multinest

Gaussian mixture model:

True evidence:  log(E) = -5.27
Multinest:
Reconstruction: log(E) = -5.33 ± 0.11
Likelihood evaluations ~ 104

Thermodynamic integration:
Reconstruction: log(E) = -5.24 ± 0.12
Likelihood evaluations ~ 106
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D Nlike efficiency likes per 
dimension

2 7000 70% 83

5 18000 51% 7

10 53000 34% 3

20 255000 15% 1.8

30 753000 8% 1.6

Feroz and Hobson 
(2007)
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Feroz and Hobson 
(2007) Bayesian reconstruction

7 out of 8 objects correctly identified. 
Confusion happens because 2 objects very close.

MultiNest applied to object detection
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The Savage-Dickey density ratio

• This methods works for nested models and gives the Bayes factor analytically.

• Assumptions: nested models (M1 with parameters θ,Ψ reduces to M0 for e.g. Ψ =0) 
and separable priors (i.e. the prior P(θ,Ψ|M1) is uncorrelated with  P(θ|M0))

• Result: 

• Advantages:

• analytical

• often accurate 

• clarifies the role of prior

• does not rely on Gaussianity

B01 = P (Ψ=0|d,M1)
P (Ψ=0|M1)

Prior

Marginal posterior
under M1 

Ψ = 0
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Cosmological applications
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Cosmological model building: results

lnB < 0: ΛCDM remains the “best” model from a Bayesian perspective! 

Trotta (2008)
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Level 1 inference:
Constraints on curvature

Assuming flatness (!" = 0): 

!#     =  0.721 ± 0.015 

!cdm  =  0.233 ± 0.013 

!b     =  0.0462 ± 0.0015 

0.0170 < !" < 0.0068 (95%) 

Assuming dark energy is #: 
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Level 2 inference:
a three-way model comparison

• For a FRW Universe, there are only 3 discrete models for the geometry: 

Model 0: κ = 0
Flat

Ωκ = 0 

ds2 = −dt2 + a2
�

dr2

1−κr2 + r2dΩ
�

Model 1: κ = +1
Closed
Ωκ < 0 

Model -1: κ = -1
Open
Ωκ > 0 

Ωκ = − κ

H
2
0a

2
0

P(M0) = 1/3 P(M+1) = 1/3 P(M-1) = 1/3

Vardanyan, RT & Silk (2009)
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Curvature priors 

• The Astronomer’s prior: 

motivated by consistency with basic properties of the observed Universe (age of 
oldest objects, obviously non-empty)

• The Curvature scale prior: 

gives the same prior probability to all orders of magnitude for the curvature radius 
(a0), between 10-5 for the curvature parameter (size of curvature perturbation) to 
unity (Universe not empty)

−1 ≤ Ωκ ≤ 1 (flat on Ωκ)

−5 ≤ log |Ωκ| ≤ 0 (flat on log Ωκ)
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Results: current model comparison 

• A positive lnB favours the flat model over curved one

posterior 
probability of 

flatness

posterior 
probability of 

an infinite 
Universe

Vardanyan, RT & Silk (2009)

prior = 1/3 prior = 2/3
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The number of Hubble spheres

• For closed models, we can compute the probability distribution of the number of 
Hubble spheres (apparent particle horizon) contained in a spatial slice: 

Curvature scale prior

Astronomer’s 
prior

NU > 5 a robust lower bound
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Level 3 inference: 
Bayesian model-averaged constraints

• Aim: model-independent constraints that 
account for model uncertainty

• Model posterior: flat models are preferred 
by Bayesian model selection → probability 
gets concentrated onto those models 

• Consequence: constraints on the curvature, 
number of Hubble spheres and size of the 
Universe can be stronger after Baysian 
model averaging!

• Number of Hubble spheres NU > 251 (99%) 
~8 times stronger
Radius of curvature > 42 Gpc (99%)
1.5 times stronger

P (θ|d) =
�

i P (Mi|d)P (θ|d, Mi)

Flat 
Universe

Vardanyan, RT & Silk (2011)

Vardanyan, RT & Silk (2011)

Concentrarion of 
probability 
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Hunting down the best 
model of inflation 
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Inflationary models: large and small field

• The simplest inflationary scenario is based on one single scalar field (adiabatic 
perturbations)

• Taylor expansion of the potential V(φ) of single-field models gives two classes:
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Priors on inflationary potential parameters

• Priors need to be chosen carefully based on physical considerations! 

• Some arbitrariness involved in some choices, but mostly dictated by physical 
boundaries or theoretical prejudice - see Martin, Ringeval & Trotta (2011)

• Data: WMAP7. Parameters and priors (Martin et al, arxiv: 1009.4157):

number of free parameters
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Effective model complexity

• "Number of free parameters" is a relative concept. The relevant scale is set by the 
prior range

• How many parameters can the data support, regardless of whether their detection is 
significant?

• The Bayesian complexity measures the effective number of parameters:

Kunz, RT & Parkinson (2006), Spiegelhalter et al (2002)
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Example: polynomial fitting

• Data generated from a model with n = 6:

GOOD DATA
Max supported complexity ¼ 9

INSUFFICIENT DATA
Max supported complexity ¼ 4
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Results: Small field models favoured

 The probability of small field models rises from an initial 50% to 
P(small field | data) =  0.77 ± 0.03
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n - complexity
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Conclusions

•Determining the presence of new parameters is a model 
comparison task: this requires the Bayesian evidence

•Bayesian model comparison allows to quantify the 
preference between two or more competing models, 
automatically implementing Occam’s razor. 

•The prior choice for the extra parameters is critical in 
controlling the strength of the Occam’s razor effect. As 
such, a sensitivity analysis is mandatory.
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