Recent advances in cosmological Bayesian model comparison

Roberto Trotta Astrophysics, Imperial College London <u>www.robertotrotta.com</u>

1. What is model comparison?

2. The Bayesian model comparison framework

3. Cosmological applications (curvature, inflation)

Imperial College London

Bayes in the sky

Review of Bayesian methods in cosmology: Trotta (2008)

Model comparison: evidence for new physics?

Imperial College London

"Look Elsewhere" effect - see Eilam Gross' talk

Cosmological model comparison

Imperial College London

- Is the spectrum of primordial fluctuations scale-invariant (n = 1)?
- Model comparison:
 n = 1 vs n ≠ 1 (with inflation-motivated prior)

• Results:

n ≠ 1 favoured with odds of 17:1 (Trotta 2007) n ≠ 1 favoured with odds of 15:1 (Kunz, Trotta & Parkinson 2007) n ≠ 1 favoured with odds of 7:1 (Parkinson 2007 et al 2006)

WMAP 7-years temperature power spectrum

The Bayesian framework

The many uses of Bayesian model comparison

Imperial College London

ASTROPHYSICS

Exoplanets detection Is there a line in this spectrum? Is there a source in this image? Cross-matching of sources

COSMOLOGY

Is the Universe flat? Does dark energy evolve? Are there anomalies in the CMB? Which inflationary model is best? Is there evidence for modified gravity? Are the initial conditions adiabatic?

Many scientific questions are of the model comparison type

ASTROPARTICLE

Gravitational waves detection Do cosmic rays correlate with AGNs?

Dark matter signals

Level 2: model comparison

Imperial College London

$$P(\theta|d, M) = \frac{P(d|\theta, M)P(\theta|M)}{P(d|M)}$$

Bayesian evidence or model likelihood

The evidence:

$$P(d|M) = \int_{\Omega} d\theta P(d|\theta, M) P(\theta|M)$$

The model's posterior:

$$P(M|d) = \frac{P(d|M)P(M)}{P(d)}$$

When comparing two models:

 $\frac{P(M_0|d)}{P(M_1|d)} = \frac{P(d|M_0)}{P(d|M_1)} \frac{P(M_0)}{P(M_1)}$

The Bayes factor:

$$B_{01} \equiv \frac{P(d|M_0)}{P(d|M_1)}$$

Posterior odds = Bayes factor × prior odds

• A (slightly modified) Jeffreys' scale to assess the strength of evidence (**Notice:** this is empirically calibrated!)

InB	relative odds	favoured model's probability	Interpretation		
< 1.0	< 3:1	< 0.750	not worth mentioning		
< 2.5	< 12:1	0.923	weak		
< 5.0	< 150:1	0.993	moderate		
> 5.0	> 150:1	> 0.993	strong		

Model comparison for nested models

- This happens often in practice: we have a more complex model, M₁ with prior P(θ|M₁), which reduces to a simpler model (M₀) for a certain value of the parameter, e.g. θ = θ* = 0 (nested models)
- Is the extra complexity of M₁ warranted by the data?

About frequentist hypothesis testing

- Warning: frequentist hypothesis testing cannot be interpreted as a statement about the probability of the hypothesis!
- Example: to reject the null hypothesis H₀: θ = 0, draw *n* normally distributed points (with known variance σ²). The χ² is distributed as a chi-square distribution with (*n*-1) degrees of freedom (dof). Pick a significance level α (or p-value, e.g. α = 0.05). If P(χ² > χ²_{obs}) < α reject the null hypothesis.
- This is a statement about the probability of observing data as extreme or more extreme than have been measured assuming the null hypothesis is correct.
- It is not a statement about the probability of the null hypothesis itself and cannot be interpreted as such! (or you'll make gross mistakes)
- The use of p-values implies that a hypothesis that may be true can be rejected because it has not predicted observable results that have not actually occurred. (Jeffreys, 1961)

Assessing hypotheses

Imperial College London

P(data|hypothesis) ≠ P(hypothesis|data)

Example:

Hypothesis (H): is a random person female (H=F or H=M)? Observation (data): is the person pregnant? (D = Y) Caution: P(D=Y|H=F) = 0.03but P(H=F|D=Y) >> 0.03

Prior-free evidence bounds

- What if we do not know how to set the prior?
- Then our physical theory is probably not good enough! (e.g., dark energy, inflationary potentials)
- E.g.: for nested models, we can still choose a prior that will maximise the support for the more complex model:

How to interpret the "number of sigma's"

Imperial College London

X	sigma	Absolute bound on InB (B)	"Reasonable" bound on InB (B)
0.05	2.0	2.0 (7:1) <mark>weak</mark>	0.9 (3:1) undecided
0.003	3.0	4.5 (90:1) moderate	3.0 (21:1) moderate
0.0003	3.6	6.48 (650:1) <mark>strong</mark>	5.0 (150:1) <mark>strong</mark>

Numerical evaluation of the Bayesian evidence

Computing the evidence

Imperial College London

Evidence: $P(d|M) = \int_{\Omega} d\theta P(d|\theta, M) P(\theta|M)$ Bayes factor: $B_{01} \equiv \frac{P(d|M_0)}{P(d|M_1)}$

- Usually a computational demanding multi-dimensional integral!
- Several numerical/semi-analytical techniques available:
 - Thermodynamic integration or Population Monte Carlo
 - Laplace approximation: approximate the likelihood to second order around maximum gives Gaussian integrals (for normal prior). Can be inaccurate.
 - Savage-Dickey density ratio: good for nested models, gives the Bayes factor
 - Nested sampling: clever & efficient, can be used generally

(animation courtesy of David Parkinson)

An algorithm to simplify the computation of the Bayesian evidence (Skilling, 2006):

$$X(\lambda) = \int_{\mathcal{L}(\theta) > \lambda} P(\theta) d\theta$$
$$P(d) = \int d\theta \mathcal{L}(\theta) P(\theta) = \int_0^1 X(\lambda) d\lambda$$

Feroz et al (2008), *arxiv: 0807.4512* Trotta et al (2008), *arxiv: 0809.3792*

The MultiNest algorithm

• MultiNest: Also an extremely efficient sampler for multi-modal likelihoods! Feroz & Hobson (2007), RT et al (2008), Feroz et al (2008)

Computation of the evidence with Multinest Imperial College

Gaussian mixture model:

True evidence: log(E) = -5.27 **Multinest:** Reconstruction: $log(E) = -5.33 \pm 0.11$ Likelihood evaluations ~ 10^4 **Thermodynamic integration:** Reconstruction: $log(E) = -5.24 \pm 0.12$ Likelihood evaluations ~ 10^6

D	N _{like}	efficiency	likes per dimension		
2	7000	70%	83		
5	18000	51%	7		
10	53000	34%	3		
20	255000	15%	1.8		
30	753000	8%	1.6		

MultiNest applied to object detection

Imperial College London

Feroz and Hobson (2007)

Bayesian reconstruction

7 out of 8 objects correctly identified. Confusion happens because 2 objects very close.

The Savage-Dickey density ratio

Tuesday, 31 May 2011

Imperial College

london

Cosmological applications

Cosmological model building: results

Imperial College London

Competing model	$\Delta N_{\mathbf{p}}$	r ln B	\mathbf{Ref}	Data	Outcome
Initial conditions Isocurvature modes					
CDM isocurvature + arbitrary correlations Neutrino entropy + arbitrary correlations Neutrino velocity + arbitrary correlations	$^{+1}_{+4}_{+1}_{+4}_{+1}_{+4}$	$\begin{array}{c} -7.6 \\ -1.0 \\ [-2.5, -6.5]^p \\ -1.0 \\ [-2.5, -6.5]^p \\ -1.0 \end{array}$	[58] [46] [60] [46] [60] [46]	WMAP3+, LSS WMAP1+, LSS, SN Ia WMAP3+, LSS WMAP1+, LSS, SN Ia WMAP3+, LSS WMAP1+, LSS, SN Ia	Strong evidence for adiabaticity Undecided Moderate to strong evidence for adiabaticity Undecided Moderate to strong evidence for adiabaticity Undecided
Primordial power spectr No tilt $(n_s = 1)$	-1	$\begin{array}{c} +0.4 \\ [-1.1, -0.6]^p \\ -0.7 \\ -0.9 \\ [-0.7, -1.7]^{p,d} \\ -2.0 \\ -2.6 \\ -2.9 \\ < -3.9^c \end{array}$	[47] [51] [58] [70] [186] [185] [70] [58] [65]	WMAP1+, LSS WMAP1+, LSS WMAP1+, LSS WMAP3+ WMAP3+, LSS WMAP3+, LSS WMAP3+, LSS WMAP3+, LSS	Undecided Undecided Undecided $n_s = 1$ weakly disfavoured $n_s = 1$ weakly disfavoured $n_s = 1$ moderately disfavoured $n_s = 1$ moderately disfavoured $Moderate$ evidence at best against $n_s \neq 1$
Running	+1	$[-0.6, 1.0]^{p,d}$ < 0.2^c	[186] [166]	WMAP3+, LSS WMAP3+, LSS	No evidence for running Running not required
Running of running Large scales cut–off	$^{+2}_{+2}$	$< 0.4^c$ [1.3, 2.2] ^{p,d}	[166] [186]	WMAP3+, LSS WMAP3+, LSS	Not required Weak support for a cut–off
Matter-energy content Non-flat Universe	+1	-3.8 -3.4	[70] [58]	WMAP3+, HST WMAP3+, LSS, HST	Flat Universe moderately favoured Flat Universe moderately favoured
Coupled neutrinos	$^{+1}$	-0.7	[193]	WMAP3+, LSS	No evidence for non–SM neutrinos
Dark energy sector $w(z) = w_{\text{eff}} \neq -1$	+1	$[-1.3, -2.7]^p$ -3.0 -1.1 $[-0.2, -1]^p$ $(-1.1)^{-1.2}$	[187] [50] [51] [188]	SN Ia SN Ia WMAP1+, LSS, SN Ia SN Ia, BAO, WMAP3	Weak to moderate support for Λ Moderate support for Λ Weak support for Λ Undecided
$w(z) = w_0 + w_1 z$	+2	$[-1.6, -2.3]^a$ $[-1.5, -3.4]^p$ -6.0 -1.8	[189] [187] [50]	SN Ia, GRB SN Ia SN Ia SN Ia BAO WMAB3	Weak support for Λ Weak to moderate support for Λ Strong support for Λ Weak support for Λ
$w(z) = w_0 + w_a (1-a)$	+2	$[-1.0]{-1.1}$ $[-1.2, -2.6]^d$	[188] [189]	SN Ia, BAO, WMAP3 SN Ia, BAO, WMAP3 SN Ia, GRB	Weak support for Λ Weak to moderate support for Λ
Reionization history No reionization ($\tau = 0$) No reionization and no tilt	$^{-1}_{-2}$	$^{-2.6}_{-10.3}$	[70] [70]	WMAP3+, HST WMAP3+, HST	$\tau \neq 0$ moderately favoured Strongly disfavoured

InB < 0: ACDM remains the "best" model from a Bayesian perspective!

Trotta (2008)

Level 2 inference: a three-way model comparison

• For a FRW Universe, there are only 3 discrete models for the geometry:

$$ds^{2} = -dt^{2} + a^{2} \left(\frac{dr^{2}}{1 - \kappa r^{2}} + r^{2} d\Omega \right)$$
$$\Omega_{\kappa} = -\frac{\kappa}{H_{0}^{2} a_{0}^{2}}$$

 Model 0: $\kappa = 0$ Model 1: $\kappa = +1$ Model -1: $\kappa = -1$

 Flat
 Closed
 Open

 $\Omega_{\kappa} = 0$ $\Omega_{\kappa} < 0$ $\Omega_{\kappa} > 0$

 P(M_0) = 1/3
 P(M_{+1}) = 1/3
 P(M_{-1}) = 1/3

Roberto Trotta

Imperial College

London

Curvature priors

• The Astronomer's prior:

motivated by consistency with basic properties of the observed Universe (age of oldest objects, obviously non-empty)

$$-1 \leq \Omega_{\kappa} \leq 1$$
 (flat on Ω_{κ})

• The Curvature scale prior:

gives the same prior probability to all orders of magnitude for the curvature radius (a_0) , between 10^{-5} for the curvature parameter (size of curvature perturbation) to unity (Universe not empty)

$$-5 \le \log |\Omega_{\kappa}| \le 0$$
 (flat on $\log \Omega_{\kappa}$)

Results: current model comparison

• A positive InB favours the flat model over curved one

	prior = 1/3			prior = 2/3	
Data sets and models	$\ln B_{01}$	$\ln B_{0-1}$	$p(\mathcal{M}_0 d)$	$p(N_U=\infty d)$	Notes
				Astronomer's p	rior (flat in Ω_{κ})
WMAP5+BAO ($w = -1$)	4.1	5.3	0.98	0.98	Moderate evide
WMAP5+BAO+SNIa ($w = -1$)	4.2	5.3	0.98	0.98	Moderate evide
WMAP5+BAO ($w \neq -1$)	1.0	6.1	0.74	0.74	Weak evidence
WMAP5+BAO+SNIa $(w \neq -1)$	3.9	5.3	0.98	0.98	Moderate evide
				Curvature scale	prior (flat in o_{κ})
WMAP5+BAO ($w = -1$)	0.4	0.6	0.45	0.69	Inconclusive
WMAP5+BAO+SNIa $(w = -1)$	0.4	0.6	0.45	0.69	Inconclusive
WMAP5+BAO ($w \neq -1$)	-0.8	0.5	0.26	0.42	Inconclusive
WMAP5+BAO+SNIa $(w \neq -1)$	0.3	0.6	0.44	0.67	Inconclusive
	posterio	r			
	bability o	f probability	of		
Vardanyan, RT & Silk (2009)			flatness an infinite		
				Universe	
					Roberto Trotta

• For closed models, we can compute the probability distribution of the number of Hubble spheres (apparent particle horizon) contained in a spatial slice:

 $N_{\rm U} > 5$ a robust lower bound

Level 3 inference: Varda Bayesian model-averaged constraints

$P(\theta|d) = \sum_{i} P(M_i|d) P(\theta|d, M_i)$

- Aim: model-independent constraints that account for model uncertainty
- Model posterior: flat models are preferred by Bayesian model selection → probability gets concentrated onto those models
- **Consequence:** constraints on the curvature, number of Hubble spheres and size of the Universe can be **stronger** after Baysian model averaging!
- Number of Hubble spheres N_U > 251 (99%)
 ~8 times stronger
 Radius of curvature > 42 Gpc (99%)
 1.5 times stronger

Vardanyan, RT & Silk (2011)

Imperial College London

43

Hunting down the best model of inflation

BE SHARK SMART INFORMATION INLIGTING INGCACISO

 Great Write blanks networkly acc of blocks partners all your reason of a creat Write blanks are positive and are disappeness available i. Encounters with sharks are rare, but please remain alers i. Great Write Sharks are to an Write Sharks are an important part of the induced maxime available.

Jaar netionellisis on sugarou per Mindendisasie is reachingue an das genominaties is monitore Madionarialità is disario essai metro sacoltaria ancienti pet tot egi hallo dio sono una tipoli tot egi hallo dio sono is hallongilio tipol yano dio molarapilio tipol yano dia molarapilio tipol yano di molarapilio tipol yano dia mola Index conductive conditions: Ministration and an information Ministration Ministration and an information Minis

11111

SAFETY TIPS

DO • Swim, surl, surlski, or kayak in g • Swim close to shore / in waist deep water

 Consider using a personal shar shield for surfing or kayaking

- DO NOT • Swim at night or if bleeding • Swim, surf, surfski or kayak where birds, dolphins or seals are feeding, or where people are fishing
- Moenie saans swem of wanneer jy bloei nie Moenie swem, branderplankry, branderski of kajakroei indien weils, dollyne of robbe daar naby vreet of mense daar naby visvang nie

VEILIGHEIDSWENKE

of kajakroei in groepe • Swein naby aan die kus of in middellyf-diep water

MOENIE

 Oorweeg dit om 'n persoonlike haalskild te gebruik wanneer jy kajakroel of branderplankry

OHA UKWENZE • Dadani, nityibilize ngamaplanga, okanya ngekayak ningamapla • Dadelani kafupti nanunsener / omanzini ama esingeni

INGCEBISO ZOKHUSELEKO

emandel ana esingeni Kongalancedo ukoseloonaica Bhakha tekurikhusela kookrebe xa nisiya kutyibiliza ngamaplanga eminaziri okanye ngekayak

OMA UNGAKWENZI

 Ukufada ebusuku okanye xa usopha
 Ukudada, ukutyibiliza ngamaplanga, ukudlala emararni okanye ngekayak kufuphi nendawo okutya kuyo tintaka, amahlengesi skanye iintini zolwandle, okanye kufuphi nendawo ekulotywayo kuyo

EMERGENCY NUMBERS / NOODNOMMERS / IINOMBOLO ZEXESHA LIKAXAKEKA (* 107 🛙 021 480-7700 / 080 911-4357 🛠 021 449-3500

Tuesday, 31 May 2011

Inflationary models: large and small field Imperial College

- The simplest inflationary scenario is based on one single scalar field (adiabatic perturbations)
- Taylor expansion of the potential $V(\phi)$ of single-field models gives two classes:

$$V(\phi) = M^4 \left(\frac{\phi}{M_{\rm Pl}}\right)^p \text{ (large field)}$$
$$V(\phi) = M^4 \left[1 - \left(\frac{\phi}{\mu}\right)^p\right] \text{ (small field)}$$

Priors on inflationary potential parameters Imperial College

- Priors need to be chosen carefully based on physical considerations!
- Some arbitrariness involved in some choices, but mostly dictated by physical boundaries or theoretical prejudice see Martin, Ringeval & Trotta (2011)
- Data: WMAP7. Parameters and priors (Martin et al, arxiv: 1009.4157):

		L	μ				$\langle M_{\rm P}$	P1 /	
Parameter	Small field models, Eq. (4)			Large field models, Eq. (3)					
	SFI_s	\mathbf{SFI}_l	SFI_f	LFI_p	$LFI_{2/3}$	LFI_1	LFI_2	LFI_3	LFI_4
Normalization, $\ln P_*$	$[2.7 imes 10^{-10}, 4.0 imes 10^{-10}]$			$[2.7 imes 10^{-10}, 4.0 imes 10^{-10}]$					
Exponent, p		[2.4,]	10]	[0.2, 5]	2/3	1	2	3	4
Vacuum expectation, $\log(\mu/M_{\rm Pl})$	[-1, 0]	[0,2]	$\left[-1,2 ight]$		No	ot appl	icable		
Reheating, $\ln R$	[-46, 15]			[-46, 15]					
n number of free parameters	4	4	4	3	2	2	2	2	2

 $V(\phi) = M^4 \left[1 - \left(\frac{\phi}{2}\right)^p \right] \qquad \qquad V(\phi) = M^4 \left(\frac{\phi}{2\pi}\right)^p +$

Effective model complexity

- "Number of free parameters" is a relative concept. The relevant scale is set by the prior range
- How many parameters can the data support, regardless of whether their detection is significant?
- The Bayesian complexity measures the effective number of parameters:

$$egin{split} \mathcal{C}_b &= \overline{\chi^2(heta)} - \chi^2(\widehat{ heta}) \ &= \sum_i rac{1}{1 + (\sigma_i / \Sigma_i)^2} \end{split}$$

Kunz, RT & Parkinson (2006), Spiegelhalter et al (2002)

Example: polynomial fitting

Imperial College London

• Data generated from a model with n = 6:

Imperial College Results: Small field models favoured London The probability of small field models rises from an initial 50% to $P(small field | data) = 0.77 \pm 0.03$ Favoured SFI, **Moderate Evidence** $LFI_{2/3}$ (p=2/3) 2 SFI. $(\mu < M_{Pl})$ Weak Evidence In (Bayes Factor) $LFI_1 (p=1)$ SFI_{μ} ($\mu > M_{Pl}$) LFI_p (0.2<p<5) 0 LFl_{2} (p=2) Weak Evidence Disfavoured LFI_{a} (p=3) -2 Moderate Evidence -4 LFI_{4} (p=4) Strong Evidence 2 3 0 - 1 4 Effective number of unconstrained parameters n - complexity Roberto Trotta

Conclusions

- Determining the presence of new parameters is a model comparison task: this requires the Bayesian evidence
- Bayesian model comparison allows to quantify the preference between two or more competing models, automatically implementing Occam's razor.
- The prior choice for the extra parameters is critical in controlling the strength of the Occam's razor effect. As such, a sensitivity analysis is mandatory.