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Overview 

  Using MapReduce for analysis 
  Parallelizing an algorithm 
  Learning theory  
  Making an algorithm online 
  Making an algorithm stochastic 
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The world of MapReduce 
  Two basic scenarios: 

  Traditional batch processing – text processing, data 
warehousing 

  Machine learning: 
  Training can be computationally hard 
  Can be necessary to send tons of data to each mapper  

  The key is to have a summation form: 

02 June 2011 3/16 GREAT 2011 Summer School 

€ 

y = f (x)∑

reduce map 



How to sort a petabyte in 16.1 
(or 6.8) hrs 
  Algorithm (Hadoop terasort): 

  Divide data between mappers 
  Mappers produce a key for each data 
  The data is partitioned across R reducers using a 

partitioning function based on a two-level prefix tree 
(trie) that guarantees that all the keys in reduce N 
are after all of the keys in reduce N-1 

  Normal guarantee that within a given partition, key/
value pairs are processed in increasing key order 

  Reducer is an identity function 
  Launch on ~3800 nodes (2 x Quad Core 2.5 GHz 

Xeons, 4 x 160 GB SATA, 16 GB RAM per node), 
80000 mappers, 20000 reducers (1.03 TB/
minute) 
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MapReduce for data mining 
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One iteration Multiple iterations Not good for MR 

Clustering k-means 

Classification Naïve Bayes, 
kNN 

Gaussian mixture SVM, HMM 

Graphs PageRank,  
connected component 

Information retrieval Inverted index 

•  Single pass 
•  Keys uniformly distributed 

•  Small shared information  
  synchronized across iterations 
•  Multiple passes 
•  Intermediate states are small 

•  Large shared information 
•  Lot of fine-grained synchronization 



K-means clustering 
1. Start with k cluster centers (chosen 

randomly or to some recipe) 
2.  Assign each data point to its nearest 

cluster center 
3.  Reevaluate the cluster centers as the 

“average” of the data in (2) 
4.  Repeat until cluster centers no longer 

change or some other stopping criterion is 
met 

Aims to minimize squared loss function: 
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K-means illustration 
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Parallelizing k-means 
  Analysis: 

  Large amounts of data that do not need to be sent 
around processors 

  Minimum processor intercommunication 
  Data set needs to be read for each iteration but each 

point only needs to be read by one processor 
  Solution: 

  Divide data amongst processors 
  Each processor reads previous iteration’s cluster 

centers and assigns its data to the clusters 
  Each processor then calculates new centers for its 

data 
  True cluster centers for this iteration are weighted 

average of new centers from each processor 
  Local clustering, work with average quantities 
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MapReduce implementation 
  Initialize centers for iteration 0 (prerun?) 
  Map: 

  Get centers from last iteration 
  Read data and calculate distance to each center 
  Calculate average coordinates for each cluster 
  Emit (key = cluster id, value = size of cluster + 

average coordinates) for each cluster 
  Reduce: 

  Calculate weighted average of its input 
  Emit (iteration #, cluster id, cluster center 

coordinates, size of cluster) 
  Persist cluster details for each iteration   
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Visiting the data only once 

  Data are too large to store on 
available resources or hold in memory 

  Data are not persistent so no later 
processing possible 

  Rough-and-ready results required for 
data exploration 

  Time-dependent results to check 
convergence, data quality 
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Learning theory 
  The goal of a learning system is to find the minimum 

of the expected loss function 
  The ground truth function is unknown 
  An approximation (empirical loss function) can be 

made using a finite training set of independent 
observations 

  Types of training methods: 
  Batch-based – all training data at same time 
  Online – incremental updating 
  Decremental – handles concept drift 
  Stochastic – using random samples of data 

  Established k-means MapReduce implementations are 
batch-based because output of mappers is completely 
written to file system before grouping by keys 
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Making k-means online 
  Need an incremental version of the algorithm: 

 Make initial guesses for the centers w1, w2, ..., wt 
 Set the counts n1, n2, ..., nt to zero 
 Until interrupted: 
  Acquire the next example, x 
  If wi is closest to x: 
   Increment ni 
   Replace wi by wi + (1/ni)*(x - wi) 
  end_if 
 end_until 

  Can this be parallelized? (Exercise for the student) 
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Making k-means stochastic 
  k-means is prone to local minima and 

sensitive to initial clusters 
  Normally repeat several times 
  Stochastic algorithm can reach (global) 

minimum quicker: 
  (Nominally) works with subset of the data 
  Relative position of clusters found very quickly 
  Terminal convergence slowed down by 

stochastic noise implied by random choice of 
points  

  Great learning algorithm but hopeless 
optimization algorithm 
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Gradient descent learning 

  In gradient descent, the parameter updates 
are proportional to the gradient of the 
partial loss: 

 where wt is the value of the centers after 
updating from example t and µ is the 
learning rate. 

  For k-means: 
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Learning rate 
  The convergence rate of gradient descent 

drastically improves: 
  replacing the scalar learning rate µt by a definite 

positive symmetric matrix ϕt that approximates the 
inverse Hessian of the loss function:

  For k-means:  
  the Hessian of the loss function is a diagonal matrix 

whose coefficients are equal to the probability that an 
example x is associated with the center wt 

  This can be estimated by: 
  simply counting how many examples nt have been 

associated with a cluster wt    
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Stochastic implementation 
Make initial guesses for the centers w1, w2, ..., wt 
Set the counts n1, n2, ..., nt to zero 

 Until interrupted: 
  Acquire the next example, x 
  If wi is closest to x: 
   Increment ni 
   Replace wi by wi + (1/ni)*(x - wi) 
  end_if 
 end_until 

This is the same as the online version! 
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