
GREAT 2011 Summer School

C3: How to analyze a petabyte

Matthew J. Graham (Caltech, VAO)

Overview

  Using MapReduce for analysis
  Parallelizing an algorithm
  Learning theory
  Making an algorithm online
  Making an algorithm stochastic

02 June 2011 2/16 GREAT 2011 Summer School

The world of MapReduce
  Two basic scenarios:

  Traditional batch processing – text processing, data
warehousing

  Machine learning:
  Training can be computationally hard
  Can be necessary to send tons of data to each mapper

  The key is to have a summation form:

02 June 2011 3/16 GREAT 2011 Summer School

€

y = f (x)∑

reduce map

How to sort a petabyte in 16.1
(or 6.8) hrs
  Algorithm (Hadoop terasort):

  Divide data between mappers
  Mappers produce a key for each data
  The data is partitioned across R reducers using a

partitioning function based on a two-level prefix tree
(trie) that guarantees that all the keys in reduce N
are after all of the keys in reduce N-1

  Normal guarantee that within a given partition, key/
value pairs are processed in increasing key order

  Reducer is an identity function
  Launch on ~3800 nodes (2 x Quad Core 2.5 GHz

Xeons, 4 x 160 GB SATA, 16 GB RAM per node),
80000 mappers, 20000 reducers (1.03 TB/
minute)

02 June 2011 4/16 GREAT 2011 Summer School

MapReduce for data mining

02 June 2011 5/16 GREAT 2011 Summer School

One iteration Multiple iterations Not good for MR

Clustering k-means

Classification Naïve Bayes,
kNN

Gaussian mixture SVM, HMM

Graphs PageRank,
connected component

Information retrieval Inverted index

•  Single pass
•  Keys uniformly distributed

•  Small shared information
 synchronized across iterations
•  Multiple passes
•  Intermediate states are small

•  Large shared information
•  Lot of fine-grained synchronization

K-means clustering
1. Start with k cluster centers (chosen

randomly or to some recipe)
2. Assign each data point to its nearest

cluster center
3. Reevaluate the cluster centers as the

“average” of the data in (2)
4. Repeat until cluster centers no longer

change or some other stopping criterion is
met

Aims to minimize squared loss function:

02 June 2011 6/16 GREAT 2011 Summer School

€

J = xi
(j) − c j

2

i=1

n

∑
j=1

k

∑

K-means illustration

02 June 2011 7/16 GREAT 2011 Summer School

Parallelizing k-means
  Analysis:

  Large amounts of data that do not need to be sent
around processors

  Minimum processor intercommunication
  Data set needs to be read for each iteration but each

point only needs to be read by one processor
  Solution:

  Divide data amongst processors
  Each processor reads previous iteration’s cluster

centers and assigns its data to the clusters
  Each processor then calculates new centers for its

data
  True cluster centers for this iteration are weighted

average of new centers from each processor
  Local clustering, work with average quantities
02 June 2011 8/16 GREAT 2011 Summer School

MapReduce implementation
  Initialize centers for iteration 0 (prerun?)
  Map:

  Get centers from last iteration
  Read data and calculate distance to each center
  Calculate average coordinates for each cluster
  Emit (key = cluster id, value = size of cluster +

average coordinates) for each cluster
  Reduce:

  Calculate weighted average of its input
  Emit (iteration #, cluster id, cluster center

coordinates, size of cluster)
  Persist cluster details for each iteration

02 June 2011 9/16 GREAT 2011 Summer School

Visiting the data only once

  Data are too large to store on
available resources or hold in memory

  Data are not persistent so no later
processing possible

  Rough-and-ready results required for
data exploration

  Time-dependent results to check
convergence, data quality

02 June 2011 10/16 GREAT 2011 Summer School

Learning theory
  The goal of a learning system is to find the minimum

of the expected loss function
  The ground truth function is unknown
  An approximation (empirical loss function) can be

made using a finite training set of independent
observations

  Types of training methods:
  Batch-based – all training data at same time
  Online – incremental updating
  Decremental – handles concept drift
  Stochastic – using random samples of data

  Established k-means MapReduce implementations are
batch-based because output of mappers is completely
written to file system before grouping by keys

02 June 2011 11/16 GREAT 2011 Summer School

Making k-means online
  Need an incremental version of the algorithm:

 Make initial guesses for the centers w1, w2, ..., wt
 Set the counts n1, n2, ..., nt to zero
 Until interrupted:
 Acquire the next example, x
 If wi is closest to x:
 Increment ni
 Replace wi by wi + (1/ni)*(x - wi)
 end_if
 end_until

  Can this be parallelized? (Exercise for the student)

02 June 2011 12/16 GREAT 2011 Summer School

Making k-means stochastic
  k-means is prone to local minima and

sensitive to initial clusters
  Normally repeat several times
  Stochastic algorithm can reach (global)

minimum quicker:
  (Nominally) works with subset of the data
  Relative position of clusters found very quickly
  Terminal convergence slowed down by

stochastic noise implied by random choice of
points

  Great learning algorithm but hopeless
optimization algorithm

02 June 2011 13/16 GREAT 2011 Summer School

Gradient descent learning

  In gradient descent, the parameter updates
are proportional to the gradient of the
partial loss:

 where wt is the value of the centers after
updating from example t and µ is the
learning rate.

  For k-means:

02 June 2011 14/16 GREAT 2011 Summer School

€

wt+1 = wt − µ t∇J t (wt)

€

wt = wt−1 − 2µt (w
t−1 − zi)

Learning rate
  The convergence rate of gradient descent

drastically improves:
  replacing the scalar learning rate µt by a definite

positive symmetric matrix ϕt that approximates the
inverse Hessian of the loss function:

  For k-means:
  the Hessian of the loss function is a diagonal matrix

whose coefficients are equal to the probability that an
example x is associated with the center wt

  This can be estimated by:
  simply counting how many examples nt have been

associated with a cluster wt

02 June 2011 15/16 GREAT 2011 Summer School

€

Φt ≈ H
−1(wt),

€

H(w) =∇∇wJ(w)

Stochastic implementation
Make initial guesses for the centers w1, w2, ..., wt
Set the counts n1, n2, ..., nt to zero

 Until interrupted:
 Acquire the next example, x
 If wi is closest to x:
 Increment ni
 Replace wi by wi + (1/ni)*(x - wi)
 end_if
 end_until

This is the same as the online version!

02 June 2011 16/16 GREAT 2011 Summer School

