GREAT 2011 SUMMER SCHOOL

C3: How to analyze a petabyte

Matthew J. Graham (Caltech, VAO)

Overview

- Using MapReduce for analysis
- Parallelizing an algorithm
- Learning theory
- Making an algorithm online
- Making an algorithm stochastic

The world of MapReduce

Two basic scenarios:

- Traditional batch processing text processing, data warehousing
- Machine learning:
 - Training can be computationally hard
 - Can be necessary to send tons of data to each mapper
- The key is to have a summation form:

02 June 2011

How to sort a petabyte in 16.1 (or 6.8) hrs

Algorithm (Hadoop terasort):

- Divide data between mappers
- Mappers produce a key for each data
- The data is partitioned across R reducers using a partitioning function based on a two-level prefix tree (trie) that guarantees that all the keys in reduce N are after all of the keys in reduce N-1
- Normal guarantee that within a given partition, key/ value pairs are processed in increasing key order
- Reducer is an identity function
- Launch on ~3800 nodes (2 x Quad Core 2.5 GHz Xeons, 4 x 160 GB SATA, 16 GB RAM per node), 80000 mappers, 20000 reducers (1.03 TB/ minute)

MapReduce for data mining

	One iteration	Multiple iterations	Not good for MR
Clustering		k-means	
Classification	Naïve Bayes, kNN	Gaussian mixture	SVM, HMM
Graphs		PageRank, connected component	
Information retrieval	Inverted index		_

- Single pass
- Keys uniformly distributed
 - Small shared information synchronized across iterations
 - Multiple passes
 - Intermediate states are small
 - Large shared information
 - Lot of fine-grained synchronization

02 June 2011

K-means clustering

- 1. Start with k cluster centers (chosen randomly or to some recipe)
- 2. Assign each data point to its nearest cluster center
- 3. Reevaluate the cluster centers as the "average" of the data in (2)
- Repeat until cluster centers no longer change or some other stopping criterion is met

Aims to minimize squared loss function:

$$J = \sum_{j=1}^{k} \sum_{i=1}^{n} \left\| x_i^{(j)} - c_j \right\|^2$$

02 June 2011

K-means illustration

Parallelizing k-means

Analysis:

- Large amounts of data that do not need to be sent around processors
- Minimum processor intercommunication
- Data set needs to be read for each iteration but each point only needs to be read by one processor

Solution:

- Divide data amongst processors
- Each processor reads previous iteration's cluster centers and assigns its data to the clusters
- Each processor then calculates new centers for its data
- True cluster centers for this iteration are weighted average of new centers from each processor
- Local clustering, work with average quantities

02 June 2011

MapReduce implementation

- Initialize centers for iteration 0 (prerun?)
- Map:
 - Get centers from last iteration
 - Read data and calculate distance to each center
 - Calculate average coordinates for each cluster
 - Emit (key = cluster id, value = size of cluster + average coordinates) for each cluster
- Reduce:
 - Calculate weighted average of its input
 - Emit (iteration #, cluster id, cluster center coordinates, size of cluster)
 - Persist cluster details for each iteration

Visiting the data only once

- Data are too large to store on available resources or hold in memory
- Data are not persistent so no later processing possible
- Rough-and-ready results required for data exploration
- Time-dependent results to check convergence, data quality

Learning theory

- The goal of a learning system is to find the minimum of the expected loss function
- The ground truth function is unknown
- An approximation (empirical loss function) can be made using a finite training set of independent observations
 - Types of training methods:
 - Batch-based all training data at same time
 - Online incremental updating
 - Decremental handles concept drift
 - Stochastic using random samples of data
- Established k-means MapReduce implementations are batch-based because output of mappers is completely written to file system before grouping by keys

Making k-means online

Need an incremental version of the algorithm:

Make initial guesses for the centers $w_1, w_2, ..., w_t$ Set the counts $n_1, n_2, ..., n_t$ to zero Until interrupted: Acquire the next example, x If w_i is closest to x: Increment n_i Replace w_i by $w_i + (1/n_i)^*(x - w_i)$ end_if end_until

Can this be parallelized? (Exercise for the student)

02 June 2011

Making k-means stochastic

- k-means is prone to local minima and sensitive to initial clusters
- Normally repeat several times
- Stochastic algorithm can reach (global) minimum quicker:
 - (Nominally) works with subset of the data
 - Relative position of clusters found very quickly
 - Terminal convergence slowed down by stochastic noise implied by random choice of points
 - Great learning algorithm but hopeless optimization algorithm

Gradient descent learning

 In gradient descent, the parameter updates are proportional to the gradient of the partial loss:

$$w^{t+1} = w^t - \mu^t \nabla J^t(w^t)$$

where w^t is the value of the centers after updating from example t and μ is the learning rate.

For k-means:

$$w^{t} = w^{t-1} - 2\mu_{t}(w^{t-1} - z_{i})$$

Learning rate

- The convergence rate of gradient descent drastically improves:
 - replacing the scalar learning rate μ_t by a definite positive symmetric matrix ϕ_t that approximates the inverse Hessian of the loss function:

$$\Phi_t \approx H^{-1}(w_t), H(w) = \nabla \nabla_w J(w)$$

For k-means:

- the Hessian of the loss function is a diagonal matrix whose coefficients are equal to the probability that an example x is associated with the center w_t
- This can be estimated by:
 - simply counting how many examples n_t have been associated with a cluster w_t

Stochastic implementation

Make initial guesses for the centers $w_1, w_2, ..., w_t$ Set the counts $n_1, n_2, ..., n_t$ to zero Until interrupted: Acquire the next example, x If w_i is closest to x: Increment n_i Replace w_i by $w_i + (1/n_i)^*(x - w_i)$ end_if end_until

This is the same as the online version!