
GREAT 2011 Summer School

C2: How to work with a petabyte

Matthew J. Graham (Caltech, VAO)

Overview

  Strategy
  MapReduce
  Hadoop family
  GPUs

01 June 2011 2/17 GREAT 2011 Summer School

Divide-and-conquer strategy
  Most problems in astronomy are

embarrassingly parallalizable
  Better technology just leads to scope

scaling:
  Better detectors increase number of

pixels image coaddition
  Better surveys increase number of

objects in catalogs N-point correlation
function

  Better memory/processors increase
number of simulation points cluster
finding

01 June 2011 3/17 GREAT 2011 Summer School

MapReduce
  Primary choice for fault-tolerant and massively

parallel data crunching
  Invented by Google fellows
  Based on functional programming map() and

reduce() functions
  Reliable processing even though machines die
  En-large parallelization – thousands of

machines for tera/petasort

01 June 2011 4/17 GREAT 2011 Summer School

What is MapReduce?
  Algorithm:

  Input data is partitioned and processed
independently by map tasks with each one emitting a
list of <key, value> pairs as output

  Pairs grouped by keys, yielding for each unique key k
a list of values v_1, …, v_n of all values belonging to
same key

  “per-key” lists are processed independently by
reduce tasks which collectively create final output

  Analogy to SQL:
  Map is a group-by clause of an aggregate query
  Reduce is an aggregate function computed over all

rows with same group-by attribute

01 June 2011 5/17 GREAT 2011 Summer School

MapReduce canonical example
  Word count:

  Map(key:uri, value:text)
 for word in tokenize(value):
 emit(word, 1)
  Reduce(key:word type, value:list of 1s)

 emit(key, sum(value))

  Workthrough:
  Map(key:”http://…”, value:”Space: the final frontier…”)

 -> (“Space”, 1), (“the”, 1), (“final”, 1), ...
  Group keys

 -> (“Space”, (1)), (“the”, (1, 1, 1)), …
  Reduce(key, value)

 -> (“Space”, 1), (“the”, 3), (“new”, 3), …

01 June 2011 6/17 GREAT 2011 Summer School

Use of MapReduce in astronomy
  Image Coaddition Pipeline (Wiley et al. 2011)

  Evaluated image coaddition of 100000 SDSS images using Hadoop
  Five possible methods of implementation with progressive

improvements
  Intend to develop full petascale data-reduction pipeline for LSST

  Berkeley Transient Classification Pipeline (Starr et al. 2010)
  Make probabilistic statements about transients making use of their

light curves the event occurs on the sky ("context") particularly
with minimal data from survey of interest

  Resampled ("noisified") well-sampled well-classified sources with
precomputed candences, models for observing depths, sky
brightness, etc. + generate classifiers for different PTF cadences

  Uses Java classifiers from Weka direct with Hadoop; Python code
with Hadoop Streaming; Cascading package; plan to use Mahout
and Hive

  Large Survey Database (AAS 217 poster)
  >109 rows, >1 TB data store for PS1 data analysis
  In-house MapReduce system

01 June 2011 7/17 GREAT 2011 Summer School

Hadoop family
(hadoop.apache.org)

  HDFS: distributed file system
  HBase: column-based db (webtable)
  Hive: Pseudo-RDB with SQL
  Pig: Scripting language
  Zookeeper: Coordination service
  Whirr: Running cloud services
  Cascading: Pipes and filters
  Sqoop: RDB interface
  Mahout: ML/DM library

01 June 2011 8/17 GREAT 2011 Summer School

Using Hadoop
  Java API
  Hadoop streaming supports other languages (anything

that supports input from stdin, output to stdout):
> $HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/

hadoop-streaming.jar \
 -input myInputDirs \
 -output myOutputDir \
 -mapper myMap.py \
 -reducer myReduce.py
  Run locally, on remote cluster, in cloud
  Test first locally on small subset of data then deploy

to expensive resources on full data set:
> cat data | map | sort | reduce
  Canonical example left as an exercise to the student

01 June 2011 9/17 GREAT 2011 Summer School

Pig (pig.apache.org)
  Pig Latin is a language which abstracts MapReduce

programming (a la SQL for RDMBS)
  A Pig Latin program describes a series of operations

(as statements) which are applied to the input data to
produce output

  Process terabytes of data on a cluster with just a few
lines of code in a terminal window

  Operators:
  Loading/storing - LOAD, STORE, DUMP
  Filtering - FILTER, DISTINCT, FOREACH…GENERATE,

STREAM, SAMPLE
  Grouping and joining - JOIN, COGROUP, GROUP, CROSS
  Sorting - ORDER, LIMIT
  Combining/splitting - UNION, SPLIT
  Diagnostic – DESCRIBE, EXPLAIN, ILLUSTRATE
  UDF – REGISTER, DEFINE

01 June 2011 10/17 GREAT 2011 Summer School

Pig canonical example
grunt>
A = LOAD '/mydata/mybook.txt';
B = FOREACH A GENERATE FLATTEN

(TOKENIZE((chararray)$0)) AS word;
C = FILTER B BY word MATCHES '\\w+';
D = GROUP C by word;
E = FOREACH D GENERATE COUNT(C) AS

count, GROUP AS word;
F = ORDER E BY count DESC;STORE F into

’/mydata/mybook.counts';

01 June 2011 11/17 GREAT 2011 Summer School

Hive (hive.apache.org)
  Hive organizes data into tables and provides HiveQL, a

dialect of SQL but not full SQL-92, to run against them
  Queries are converted into a series of MapReduce jobs
  Maintains a metastore for service and table metadata
  Differences from traditional RDBMS:

  Verifies data when a query is issued (schema on read)
  Full table scans are the norm so updates, transactions and

updates are currently unsupported
  High latency (minutes not milliseconds)
  Supports complex data types: ARRAY, MAP, and STRUCT
  Tables can be partitioned and bucketed in multiple dimensions
  Specific storage formats
  Multitable inserts
  UDFs/UDTFs/UDAFs in Java

01 June 2011 12/17 GREAT 2011 Summer School

Hive canonical example
CREATE TABLE docs(contents STRING)

 ROW FORMAT DELIMITED
 LOCATION ‘/mydata/mybook.txt’;

FROM (
 MAP docs.contents
 USING ‘tokenizer_script’ AS word, cnt
 FROM docs
 CLUSTER BY word) map_output

REDUCE map_output.word, map_output.cnt
 USING ‘count_script’ AS word, cnt;

01 June 2011 13/17 GREAT 2011 Summer School

Alternates to MapReduce
(NoHadoop)
  Percolator

  Incrementally update massive data set continuouosly
  Apache Hama

  Implementation of BSP (Bulk Synchronous Parallel)
  Alternate to MPI, smaller API, impossibility of

deadlocks, evaluate computational cost of an
algorithm as function of machine parameters

  Pregel:
  Very large graphs (billions of nodes, trillions of

edges)
  Uses BSP
  Computations are applied at each node until
  Cross-matched catalogs (GAIA, LSST, SKA)

01 June 2011 14/17 GREAT 2011 Summer School

GPUs

  1536 cores per multiprocessor (high-end)
  Each core can run 16 threads (~25k

threads/GPU)
  Threads are lightweight so can easily

launch ~billion threads/sec

01 June 2011 15/17 GREAT 2011 Summer School

Programming GPUs

  Favours brute force approach rather
than ported smart algorithms

  CUDA (NVIDIA) and OpenCL libraries
for C

  Various libraries available: sorting,
BLAS, FFT, …

  Thrust for C++
  PyCUDA/PyOpenCL for Python
  Mathematica/MATLAB
01 June 2011 16/17 GREAT 2011 Summer School

PyCUDA example
import numpy as np
from pycuda import driver, compiler, gpuarray, tools
from pycuda.curandom import rand as curand
import pycuda.autoinit

kernel_code = ”””
__global__ void multiply (float *dest, float *a, float *b)
{
 const int i = threadIdx.x;
 dest[i] = a[i] * b[i];
}
"””

mod = compiler.SourceModule(kernel_code)
multiply = mod.get_function("multiply”)
a = np.random.randn(400).astype(np.float32)
b = np.random.randn(400).astype(np.float32)
ans = np.zeros_like(a)
multiply(
 driver.Out(ans), driver.In(a), driver.In(b),
 block=(400,1,1))
print dest-a*b

01 June 2011 17/17 GREAT 2011 Summer School

