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Overview 

  Understanding the problem 
  Data structures 
  Transport protocols 
  Large file systems 
  Large databases 
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The lie of the land 
  How much data and how frequently? 

  Continuously vs. burst mode 

  What sort of data? 
  Images / binary data 
  Catalogs / textual data 

  Raw vs. structured 

  What sort of storage model? 
  Write once, read many 
  Frequent writes/updates/appends 

  What sort of access? 
  High throughput vs. availability 
  Sequential (processing) vs. random (querying) 
  Immediate access to new data? 

  How much power do you have? 
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What the experts say… 
  “Bring the computation to the data” – anon. 

  “Just store the original data; processing, etc. 
just adds bloat” – David Hogg 

  “Databases own the sweet spot between 1GB 
and 100 TB” – Jim Gray 

  “Current problems not on Google scale yet: 
300TB is really hard” – Alex Szalay 

  “Extreme computing is about tradeoffs” – Stu 
Feldman (Google) 

01 June 2011 4/13 GREAT 2011 Summer School 



The cost of a petabyte 
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$40,000 (2011) 

backblaze.com 
Aug 2009 



Data structures 
  Binary  

  with separable description (header): 
  FITS (tile compression) 
  HDF5 

  with common data model and API: 
  CDF / NetCDF 

  Text:  
  XML (VOTable) / JSON 
  Structure description (IDL) + binary data 

representation: 
  Google Protocol Buffers 
  Apache Avro 

  Archive format: 
  Sequence files : collection + index 
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Textual comparison 
XML: 
<Object> 

 <ID>Sirius</ID> 
 <Type>Star</Type> 
 <RA>101.28</RA> 
 <Dec>-16.72</Dec> 
 <Mag>-1.46</Mag> 

</Object> 
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JSON: 
{ 

 “ID”: “Sirius”, 
 “Type”: “Star”, 
 “RA”: 101.28, 
 “Dec”: -16.72, 
 “Mag”: -1.46 

} 

Protocol Buffer: 
message Object { 

 required string id = 1, 
 required string type = 2, 
 required float ra = 3, 
 required float dec = 4, 
 optional float mag = 5 

} 

Avro: 
{   “type”: “record”, “name”: “Object”, 
     “fields”: [{“name”:”ID”, “type”:”string”},

 {“name”:”Type”, “type”:”string”}, 
  {“name”:”RA”, “type”:”float”}, 
  {“name”:”Dec”, ”type”:”float”}, 
  {“name”:”Mag”, “type”:”float”} ]} 



VOEvent 
<voe:VOEvent  ivorn="ivo://raptor.lanl/VOEvent#235649409”  role="observation"  
    version="2.0” xmlns:voe=http://www.ivoa.net/xml/VOEvent/v2.0 > 
  <Who> 
    <AuthorIVORN>ivo://raptor.lanl/organization</AuthorIVORN> 
    <Date>2005-04-15T14:34:16</Date> 
  </Who> 
  <What> 
    <Description>An imaginary event report about SN 2009lw.</Description> 
    <Reference uri="http://raptor.lanl.gov/data/lightcurves/235649409" 
        mimetype="application/x-votable+xml"  
        meaning="http://www.ivoa.net/rdf/IVOAT#LightCurve"> 
    <Param name="seeing" value="2" unit="arcsec" ucd="instr.obsty.site.seeing"/> 
    <Group name="magnitude"> 
      <Description>Time is days since the ref time in the WhereWhen section</

Description> 
      <Param name="time"   value="278.02" unit="day" ucd="time.epoch" /> 
      <Param name="mag"    value="19.5"   unit="mag" ucd="phot.mag"/> 
      <Param name="magerr" value="0.14"   unit="mag" ucd="phot.mag; stat.err"/> 
    </Group> 
    <Table> 
      <Param name="telescope" value="various" utype="whatever"/> 
      <Description>Individual Moduli and Distances for NGC 0931 from NED</Description> 
      <Field name="(m-M)"    unit="mag" ucd="phot.mag.distMod"/> 
      <Field name="err(m-M)" unit="mag" ucd="phot.mag.distMod;stat.err"/> 
      <Field name="D"        unit="Mpc" ucd="pos.distance"/> 
      <Data>    
        <TR><TD>33.16</TD><TD>0.38</TD><TD>42.9</TD></TR> 
        <TR><TD>33.32</TD><TD>0.38</TD><TD>46.1</TD></TR> 
        <TR><TD>33.51</TD><TD>0.48</TD><TD>50.4</TD></TR>   
        <TR><TD>33.55</TD><TD>0.38</TD><TD>51.3</TD></TR> 
        <TR><TD>33.71</TD><TD>0.43</TD><TD>55.2</TD></TR> 
        <TR><TD>34.01</TD><TD>0.80</TD><TD>63.3</TD>/TR> 
      </Data> 
    </Table> 
  </What> 
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 <WhereWhen id="Raptor-2455100"> 
    <ObsDataLocation> 
      <ObservatoryLocation id="RAPTOR"/> 
      <ObservationLocation> 
        <AstroCoordSystem id="UTC-ICRS-TOPO"/> 
        <AstroCoords coord_system_id="UTC-ICRS-TOPO"> 
          <Time> 
            <TimeInstant> 
              <ISOTime>2009-09-25T12:00:00</ISOTime> 
            </TimeInstant> 
            <Error>0.0</Error> 
          </Time> 
          <Position2D unit="deg"> 
            <Value2> 
              <C1>37.0603169</C1> <!-- RA  --> 
              <C2>31.3116578</C2> <!-- Dec --> 
            </Value2> 
            <Error2Radius>0.03</Error2Radius> 
          </Position2D> 
        </AstroCoords> 
      </ObservationLocation> 
    </ObsDataLocation> 
  </WhereWhen> 
<Citations> 
    <EventIVORN cite="followup">ivo://raptor.lanl/VOEvent#235649408</EventIVORN> 
  </Citations> 
  <Why> 
    <Concept>process.variation.burst;em.opt</Concept> 
    <Description>Looks like a SN</Description> 
    <Inference relation="associated" probability="0.99"> 
      <Name>NGC0931</Name> 
    </Inference> 
  </Why> 
</voe:VOEvent> 



HDFS 
  Inspired by Google FS 
  Distributed, scalable, portable 
  Rack (location (network switch)) aware 
  Variety of backends:  

  local fs, remote cluster, cloud (S3) 

  Architecture: 
  Cluster of data nodes with a master name node 
  Each data node serves blocks of data (~64 MB)  
  Data replicated across multiple hosts (default is 

3 times: two same rack, one different) 
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HDFS interfaces 

  Java API, Thrift, FUSE, WebDAV  
  Command-line tool as part of Hadoop 

  Hadoop config file in /usr/local/hadoop/conf 

> hadoop fs –mkdir input 
> hadoop fs –put mydata input/ 
> hadoop fs –ls input 
> hadoop fs –cat input 
> hadoop fs –get input myresults   
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Alternates to HDFS 
  OpenStack Object Storage (“Swift”) 

  No single name node 
  Store any sized file 
  Write many times 

  iRODs 
  Provides logical mappings for digital entities  
  Rule-based adaptive middleware allowing 

customization: 
  All data in a particular directory cannot be 

deleted 
  Additional access control checks for sensitive 

data 
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Transferring data 
  Sneakernet is a fast bespoke solution 
  Internet2 will allow advanced capabilities such as 

on-demand creation and scheduling of high-
bandwidth high-performance data circuits 

  Conventional transfers do not maximize 
bandwidth 

  Parallel streams: 
  GridFTP 

  TCP not great with long-distance, high bandwidth 
or multiple flows so: 
  Fine tune TCP with large bandwidth-delay product 
  Use a TCP variant: SACK 
  Use UDP instead: UDT 
  Use a new protocol: SCTP 
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The problem with RDBMS 
  Too many reads:  

  add memcached to cache common queries -> reads not 
strictly ACID, cached data must expire 

  Too many writes:  
  scale vertically with beefed up hardware -> costly 

  Too many joins:  
  denormalize data to reduce joins 

  Server swamped:  
  stop any server-side computations 

  Some queries still slow:  
  prematerialize most complex queries, stop joining in most 

cases 
  Writes getting ever slower:  

  drop secondary indexes + triggers 
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NoSQL 
“select fun, profit from real_world where relational = false” 
  Structured storage 
  modern RDBMS show poor performance on certain data-

intensive applications:  
  indexing large no. of documents 
  serving pages on high-traffic websites  
  delivering streaming media 

  RDBMS are tuned for small but frequent read/write 
transactions or large batch transactions with rare write 
accesses 

  real world deployments:  
  Digg 
  Facebook (50 TB)  
  eBay (2 PB) 

  middleware layers can be added to provide RDBMS-type 
functionality (ACID guarantees) 
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Types of NoSQL 

  Document store (XML databases) 
  Graph (superset of triple store) 
  Key-value store (Cassandra, Dynamo, 

Project Voldemort, Velocity, Keyspace?) 
  Object database (Objectivity, Versant) 
  Tabular (BigTable, HBase, Hypertable) 
  Tuple store (Apache River)  
  Multivalue databases 
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Column orientation 
  Databases store their data as a series of 

1-dimensional structures (normally 
rows) 

  Faster seek times, aggregate operations 
  Slows writing, accelerates reading 
  Can aid compression – column data is all 

of same data type 
  Note that R uses column-oriented data 

structures 
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HBase (hbase.apache.org) 
  Distributed column-oriented “database” built on top of 

HDFS 
  Sparse, distributed, persistent, multidimensional 

sorted map 
  Suitable for real-time read/write random access  
  Java API and REST interface (Stargate) 

> hbase shell 
create ‘events’, ‘where’, ‘why’ 
put ‘events’, ‘event1’, ‘where:ra’, ‘123,45’ 
put ‘events’, ‘event2’, ‘where:dec’, ‘-16.25’ 
get ‘events’, ‘event3’, {COLUMN => ‘why:concept’} 
-> SNe 
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SciDB 
  Column-oriented db designed specifically 

for scientific data including astronomy 
  Use (immutable) arrays as first-class 

objects rather than tables 
  Maintains ACID 
  AQL and AFL: 

CREATE ARRAY pixels <flux:double> [ID=0:999,1000,0, 
X=0:255,256,0, Y=0:255,256,0] 

CREATE ARRAY dark <flux:double> [ID=0:999,1000,0, 
X=0:255,256,0, Y=0:255,256,0] 

SELECT pixels.ID, pixels.x, pixels.y, pixels.flux – dark.flux 
FROM pixels, dark 
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VOSpace 

  Lightweight layer on top of networked 
storage 

  Highly agnostic: 
  Backend implementation 
  Transport protocol 
  Data format 

  Arbitrary metadata 
  Expose third-party capabilities 
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