
GREAT 2011 Summer School

C1: How to store a petabyte

By Matthew J. Graham (Caltech, VAO)

Overview

  Understanding the problem
  Data structures
  Transport protocols
  Large file systems
  Large databases

01 June 2011 2/13 GREAT 2011 Summer School

The lie of the land
  How much data and how frequently?

  Continuously vs. burst mode

  What sort of data?
  Images / binary data
  Catalogs / textual data

  Raw vs. structured

  What sort of storage model?
  Write once, read many
  Frequent writes/updates/appends

  What sort of access?
  High throughput vs. availability
  Sequential (processing) vs. random (querying)
  Immediate access to new data?

  How much power do you have?
01 June 2011 GREAT 2011 Summer School 3

What the experts say…
  “Bring the computation to the data” – anon.

  “Just store the original data; processing, etc.
just adds bloat” – David Hogg

  “Databases own the sweet spot between 1GB
and 100 TB” – Jim Gray

  “Current problems not on Google scale yet:
300TB is really hard” – Alex Szalay

  “Extreme computing is about tradeoffs” – Stu
Feldman (Google)

01 June 2011 4/13 GREAT 2011 Summer School

The cost of a petabyte

01 June 2011 5/13 GREAT 2011 Summer School

$40,000 (2011)

backblaze.com
Aug 2009

Data structures
  Binary

  with separable description (header):
  FITS (tile compression)
  HDF5

  with common data model and API:
  CDF / NetCDF

  Text:
  XML (VOTable) / JSON
  Structure description (IDL) + binary data

representation:
  Google Protocol Buffers
  Apache Avro

  Archive format:
  Sequence files : collection + index

01 June 2011 6/13 GREAT 2011 Summer School

Textual comparison
XML:
<Object>

 <ID>Sirius</ID>
 <Type>Star</Type>
 <RA>101.28</RA>
 <Dec>-16.72</Dec>
 <Mag>-1.46</Mag>

</Object>

01 June 2011 7/13 GREAT 2011 Summer School

JSON:
{

 “ID”: “Sirius”,
 “Type”: “Star”,
 “RA”: 101.28,
 “Dec”: -16.72,
 “Mag”: -1.46

}

Protocol Buffer:
message Object {

 required string id = 1,
 required string type = 2,
 required float ra = 3,
 required float dec = 4,
 optional float mag = 5

}

Avro:
{ “type”: “record”, “name”: “Object”,
 “fields”: [{“name”:”ID”, “type”:”string”},

 {“name”:”Type”, “type”:”string”},
 {“name”:”RA”, “type”:”float”},
 {“name”:”Dec”, ”type”:”float”},
 {“name”:”Mag”, “type”:”float”}]}

VOEvent
<voe:VOEvent ivorn="ivo://raptor.lanl/VOEvent#235649409” role="observation"
 version="2.0” xmlns:voe=http://www.ivoa.net/xml/VOEvent/v2.0 >
 <Who>
 <AuthorIVORN>ivo://raptor.lanl/organization</AuthorIVORN>
 <Date>2005-04-15T14:34:16</Date>
 </Who>
 <What>
 <Description>An imaginary event report about SN 2009lw.</Description>
 <Reference uri="http://raptor.lanl.gov/data/lightcurves/235649409"
 mimetype="application/x-votable+xml"
 meaning="http://www.ivoa.net/rdf/IVOAT#LightCurve">
 <Param name="seeing" value="2" unit="arcsec" ucd="instr.obsty.site.seeing"/>
 <Group name="magnitude">
 <Description>Time is days since the ref time in the WhereWhen section</

Description>
 <Param name="time" value="278.02" unit="day" ucd="time.epoch" />
 <Param name="mag" value="19.5" unit="mag" ucd="phot.mag"/>
 <Param name="magerr" value="0.14" unit="mag" ucd="phot.mag; stat.err"/>
 </Group>
 <Table>
 <Param name="telescope" value="various" utype="whatever"/>
 <Description>Individual Moduli and Distances for NGC 0931 from NED</Description>
 <Field name="(m-M)" unit="mag" ucd="phot.mag.distMod"/>
 <Field name="err(m-M)" unit="mag" ucd="phot.mag.distMod;stat.err"/>
 <Field name="D" unit="Mpc" ucd="pos.distance"/>
 <Data>
 <TR><TD>33.16</TD><TD>0.38</TD><TD>42.9</TD></TR>
 <TR><TD>33.32</TD><TD>0.38</TD><TD>46.1</TD></TR>
 <TR><TD>33.51</TD><TD>0.48</TD><TD>50.4</TD></TR>
 <TR><TD>33.55</TD><TD>0.38</TD><TD>51.3</TD></TR>
 <TR><TD>33.71</TD><TD>0.43</TD><TD>55.2</TD></TR>
 <TR><TD>34.01</TD><TD>0.80</TD><TD>63.3</TD>/TR>
 </Data>
 </Table>
 </What>

01 June 2011 8/13 GREAT 2011 Summer School

 <WhereWhen id="Raptor-2455100">
 <ObsDataLocation>
 <ObservatoryLocation id="RAPTOR"/>
 <ObservationLocation>
 <AstroCoordSystem id="UTC-ICRS-TOPO"/>
 <AstroCoords coord_system_id="UTC-ICRS-TOPO">
 <Time>
 <TimeInstant>
 <ISOTime>2009-09-25T12:00:00</ISOTime>
 </TimeInstant>
 <Error>0.0</Error>
 </Time>
 <Position2D unit="deg">
 <Value2>
 <C1>37.0603169</C1> <!-- RA -->
 <C2>31.3116578</C2> <!-- Dec -->
 </Value2>
 <Error2Radius>0.03</Error2Radius>
 </Position2D>
 </AstroCoords>
 </ObservationLocation>
 </ObsDataLocation>
 </WhereWhen>
<Citations>
 <EventIVORN cite="followup">ivo://raptor.lanl/VOEvent#235649408</EventIVORN>
 </Citations>
 <Why>
 <Concept>process.variation.burst;em.opt</Concept>
 <Description>Looks like a SN</Description>
 <Inference relation="associated" probability="0.99">
 <Name>NGC0931</Name>
 </Inference>
 </Why>
</voe:VOEvent>

HDFS
  Inspired by Google FS
  Distributed, scalable, portable
  Rack (location (network switch)) aware
  Variety of backends:

  local fs, remote cluster, cloud (S3)

  Architecture:
  Cluster of data nodes with a master name node
  Each data node serves blocks of data (~64 MB)
  Data replicated across multiple hosts (default is

3 times: two same rack, one different)

01 June 2011 9/13 GREAT 2011 Summer School

HDFS interfaces

  Java API, Thrift, FUSE, WebDAV
  Command-line tool as part of Hadoop

  Hadoop config file in /usr/local/hadoop/conf

> hadoop fs –mkdir input
> hadoop fs –put mydata input/
> hadoop fs –ls input
> hadoop fs –cat input
> hadoop fs –get input myresults

01 June 2011 10/13 GREAT 2011 Summer School

Alternates to HDFS
  OpenStack Object Storage (“Swift”)

  No single name node
  Store any sized file
  Write many times

  iRODs
  Provides logical mappings for digital entities
  Rule-based adaptive middleware allowing

customization:
  All data in a particular directory cannot be

deleted
  Additional access control checks for sensitive

data

01 June 2011 11/13 GREAT 2011 Summer School

Transferring data
  Sneakernet is a fast bespoke solution
  Internet2 will allow advanced capabilities such as

on-demand creation and scheduling of high-
bandwidth high-performance data circuits

  Conventional transfers do not maximize
bandwidth

  Parallel streams:
  GridFTP

  TCP not great with long-distance, high bandwidth
or multiple flows so:
  Fine tune TCP with large bandwidth-delay product
  Use a TCP variant: SACK
  Use UDP instead: UDT
  Use a new protocol: SCTP

01 June 2011 12/13 GREAT 2011 Summer School

The problem with RDBMS
  Too many reads:

  add memcached to cache common queries -> reads not
strictly ACID, cached data must expire

  Too many writes:
  scale vertically with beefed up hardware -> costly

  Too many joins:
  denormalize data to reduce joins

  Server swamped:
  stop any server-side computations

  Some queries still slow:
  prematerialize most complex queries, stop joining in most

cases
  Writes getting ever slower:

  drop secondary indexes + triggers

01 June 2011 13/13 GREAT 2011 Summer School

NoSQL
“select fun, profit from real_world where relational = false”
  Structured storage
  modern RDBMS show poor performance on certain data-

intensive applications:
  indexing large no. of documents
  serving pages on high-traffic websites
  delivering streaming media

  RDBMS are tuned for small but frequent read/write
transactions or large batch transactions with rare write
accesses

  real world deployments:
  Digg
  Facebook (50 TB)
  eBay (2 PB)

  middleware layers can be added to provide RDBMS-type
functionality (ACID guarantees)

01 June 2011 14/13 GREAT 2011 Summer School

Types of NoSQL

  Document store (XML databases)
  Graph (superset of triple store)
  Key-value store (Cassandra, Dynamo,

Project Voldemort, Velocity, Keyspace?)
  Object database (Objectivity, Versant)
  Tabular (BigTable, HBase, Hypertable)
  Tuple store (Apache River)
  Multivalue databases

01 June 2011 15/13 GREAT 2011 Summer School

Column orientation
  Databases store their data as a series of

1-dimensional structures (normally
rows)

  Faster seek times, aggregate operations
  Slows writing, accelerates reading
  Can aid compression – column data is all

of same data type
  Note that R uses column-oriented data

structures

01 June 2011 16/13 GREAT 2011 Summer School

HBase (hbase.apache.org)
  Distributed column-oriented “database” built on top of

HDFS
  Sparse, distributed, persistent, multidimensional

sorted map
  Suitable for real-time read/write random access
  Java API and REST interface (Stargate)

> hbase shell
create ‘events’, ‘where’, ‘why’
put ‘events’, ‘event1’, ‘where:ra’, ‘123,45’
put ‘events’, ‘event2’, ‘where:dec’, ‘-16.25’
get ‘events’, ‘event3’, {COLUMN => ‘why:concept’}
-> SNe

01 June 2011 17/13 GREAT 2011 Summer School

SciDB
  Column-oriented db designed specifically

for scientific data including astronomy
  Use (immutable) arrays as first-class

objects rather than tables
  Maintains ACID
  AQL and AFL:

CREATE ARRAY pixels <flux:double> [ID=0:999,1000,0,
X=0:255,256,0, Y=0:255,256,0]

CREATE ARRAY dark <flux:double> [ID=0:999,1000,0,
X=0:255,256,0, Y=0:255,256,0]

SELECT pixels.ID, pixels.x, pixels.y, pixels.flux – dark.flux
FROM pixels, dark

01 June 2011 18/13 GREAT 2011 Summer School

VOSpace

  Lightweight layer on top of networked
storage

  Highly agnostic:
  Backend implementation
  Transport protocol
  Data format

  Arbitrary metadata
  Expose third-party capabilities

01 June 2011 19/13 GREAT 2011 Summer School

