Bayesian reconstruction of the Cosmological Large Scale Structure

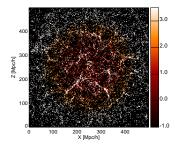
Francisco-Shu Kitaura

Leibniz Institute for Astrophysics (AIP)

May 31, 2011

Introduction

- the cosmological large-scale structure encodes a wealth of information about the evolution and origin of the Universe
- the data are plagged by many observational effects (mask, selection function, bias ...)
- statistical treatment is necessary
- compare observations with theory
- study structure formation



 $\begin{array}{l} \longrightarrow \mbox{ matter field } \delta_{\rm M}? \\ \longrightarrow \mbox{ pec. vel. field } {\bf v}? \\ \longrightarrow \mbox{ grav. pot. } \Phi_{\rm Grav}? \end{array}$

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

(1)

Bayes theorem: the posterior

$$\mathcal{P}(\mathbf{s}|\mathbf{d},\mathbf{p}) = rac{\mathcal{P}(\mathbf{s}|\mathbf{p})\mathcal{P}(\mathbf{d}|\mathbf{s},\mathbf{p})}{\int \mathrm{d}\mathbf{s}\,\mathcal{P}(\mathbf{s}|\mathbf{p})\mathcal{P}(\mathbf{d}|\mathbf{s},\mathbf{p})},$$

Posterior=prior×likelihood/evidence

 \longrightarrow clear representation of the assumptions \longrightarrow can be easily extended to nonlinear cases

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

(1)

Bayes theorem: the posterior

$$\mathcal{P}(\mathbf{s}|\mathbf{d},\mathbf{p}) = rac{\mathcal{P}(\mathbf{s}|\mathbf{p})\mathcal{P}(\mathbf{d}|\mathbf{s},\mathbf{p})}{\int \mathrm{d}\mathbf{s}\,\mathcal{P}(\mathbf{s}|\mathbf{p})\mathcal{P}(\mathbf{d}|\mathbf{s},\mathbf{p})},$$

 $Posterior{=}prior{\times}likelihood/evidence$

 \longrightarrow clear representation of the assumptions \longrightarrow can be easily extended to nonlinear cases

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Bayesian inference steps

Definition of the prior: knowledge of the underlying signal

- Definition of the likelihood: nature of the observed data
- Linking the prior to the likelihood: link signal to the data
- Bayes theorem: the posterior
- Maximization of the posterior: MAP
- Sampling the posterior: MCMC

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

- Definition of the prior: knowledge of the underlying signal
- Definition of the likelihood: nature of the observed data
- Linking the prior to the likelihood: link signal to the data
- Bayes theorem: the posterior
- Maximization of the posterior: MAP
- Sampling the posterior: MCMC

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

- Definition of the prior: knowledge of the underlying signal
- Definition of the likelihood: nature of the observed data
- Linking the prior to the likelihood: link signal to the data
- Bayes theorem: the posterior
- Maximization of the posterior: MAP
- Sampling the posterior: MCMC

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

- Definition of the prior: knowledge of the underlying signal
- Definition of the likelihood: nature of the observed data
- Linking the prior to the likelihood: link signal to the data
- Bayes theorem: the posterior
- Maximization of the posterior: MAP
- Sampling the posterior: MCMC

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

- Definition of the prior: knowledge of the underlying signal
- Definition of the likelihood: nature of the observed data
- Linking the prior to the likelihood: link signal to the data
- Bayes theorem: the posterior
- Maximization of the posterior: MAP
- Sampling the posterior: MCMC

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

- Definition of the prior: knowledge of the underlying signal
- Definition of the likelihood: nature of the observed data
- Linking the prior to the likelihood: link signal to the data
- Bayes theorem: the posterior
- Maximization of the posterior: MAP
- Sampling the posterior: MCMC

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Physical motivation: model | FK & Raul Angulo in prep

Lagrangian perturbation theory: displacement field

$$\mathbf{x} = \mathbf{q} + \mathbf{\Psi} \,. \tag{2}$$

Mass conservation:

$$\rho(\mathbf{x}, t) \mathrm{d}\mathbf{x} = \langle \rho(t_i) \rangle \mathrm{d}\mathbf{q} \,.$$
(3)

The inverse of the Jacobean leads to the overdensity field:

$$1 + \delta(\mathbf{x}(\mathbf{q}, t)) = \mathbf{J}(\mathbf{q}, t)^{-1}, \qquad (4)$$

with

$$\mathbf{J}(\mathbf{q},t) = \left|\frac{\partial \mathbf{x}}{\partial \mathbf{q}}\right| \,.$$

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Physical motivation: model | FK & Raul Angulo in prep

Lagrangian perturbation theory: displacement field

$$\mathbf{x} = \mathbf{q} + \mathbf{\Psi} \,. \tag{2}$$

Mass conservation:

$$\rho(\mathbf{x}, t) \mathrm{d}\mathbf{x} = \langle \rho(t_i) \rangle \mathrm{d}\mathbf{q} \,.$$
(3)

The inverse of the Jacobean leads to the overdensity field:

$$1 + \delta(\mathbf{x}(\mathbf{q}, t)) = \mathbf{J}(\mathbf{q}, t)^{-1}, \qquad (4)$$

with

$$\mathbf{J}(\mathbf{q},t) = \left|\frac{\partial \mathbf{x}}{\partial \mathbf{q}}\right|$$

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Physical motivation: model | FK & Raul Angulo in prep

Lagrangian perturbation theory: displacement field

$$\mathbf{x} = \mathbf{q} + \mathbf{\Psi} \,. \tag{2}$$

Mass conservation:

$$\rho(\mathbf{x}, t) \mathrm{d}\mathbf{x} = \langle \rho(t_i) \rangle \mathrm{d}\mathbf{q} \,.$$
(3)

The inverse of the Jacobean leads to the overdensity field:

$$1 + \delta(\mathbf{x}(\mathbf{q}, t)) = \mathbf{J}(\mathbf{q}, t)^{-1}, \qquad (4)$$

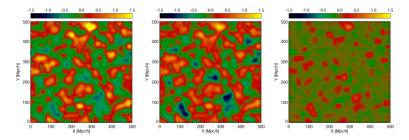
with

$$\mathbf{J}(\mathbf{q},t) = \left| \frac{\partial \mathbf{x}}{\partial \mathbf{q}} \right| \,. \tag{5}$$

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Testing model I with MR

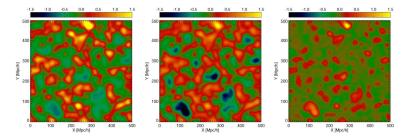
Forward relation from z = 127 to z = 0:



Testing model I with MR

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Inverse relation from z = 0 to z = 127:

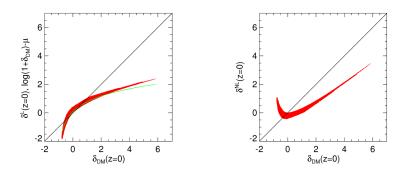


Definition of the prior Definition of the likelihood Link between the prior and the

Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Testing model I and II with MR FK & Raul Angulo in prep

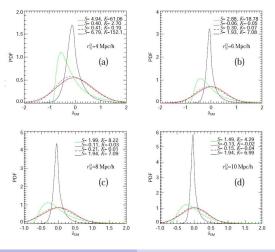
Cell-to-cell comparison:



Definition of the prior

Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Testing model I and II with MR: matter statistics

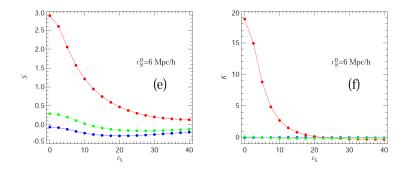


Francisco-Shu Kitaura

Bayesian reconstruction

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

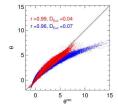
Testing model I and II with MR: matter statistics

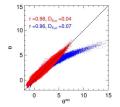


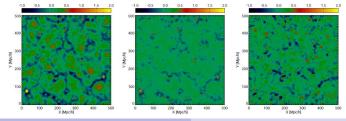
Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Testing model I and II with MR: peculiar motions

FK, Raul Angulo, Yehuda Hoffman & Stefan Gottloeber in prep



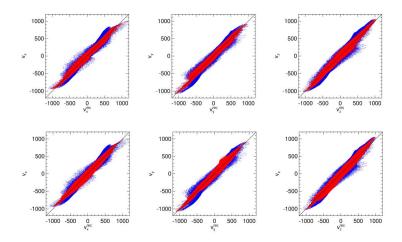




Francisco-Shu Kitaura

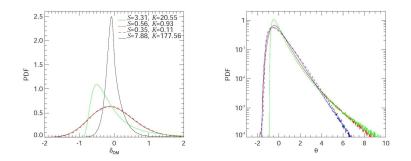
Bayesian reconstruction

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Samoling

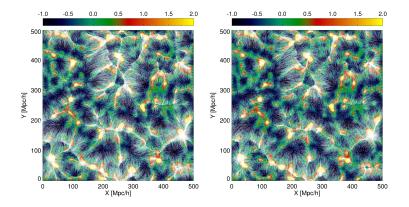


Definition of the prior Definition of the likelihood Link between the prior and the

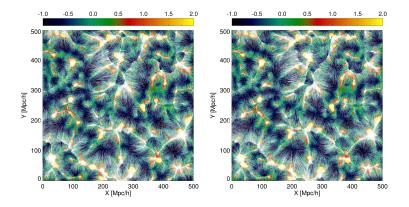
Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling



Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling



Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling



Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Non-Gaussian expansions

- relax the Gaussian-Lognormal assumption
- skewed Gaussian Edgeworth expansion (univariate case: Juszkiewicz, Bouchet & Colombi 93)
- skewed lognormal model with the 1D Edgeworth exansion (univariate case: Colombi 94)

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Non-Gaussian expansions: multivariate case FK 2010

Let me introduce here the multivariate case:

$$\Phi_i \equiv \ln \rho_i - \langle \ln \rho \rangle = s_i - \mu_i, \quad \nu_i \equiv \sum_j S_{ij}^{-1/2} \Phi_i , \quad (6)$$

$$s_i = \ln(
ho_i/\langle
ho
angle) = \ln(1+\delta_{\mathrm{M}i})$$

Multidimensional Edgeworth expansion

$$P(\mathbf{\Phi}) = G(\nu) \Big[1 + \frac{1}{3!} \sum_{i'j'k'} \langle \Phi_{i'} \Phi_{j'} \Phi_{k'} \rangle \sum_{ijk} S_{ii'}^{-1/2} S_{jj'}^{-1/2} S_{kk'}^{-1/2} h_{ijk}(\nu) + \frac{1}{4!} \sum_{i'j'k'l'} \langle \Phi_{i'} \Phi_{j'} \Phi_{k'} \Phi_{l'} \rangle \sum_{ijkl} S_{ii'}^{-1/2} S_{jj'}^{-1/2} S_{kk'}^{-1/2} S_{ll'}^{-1/2} h_{ijkl}(\nu) + \dots \Big],$$
(7)

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Non-Gaussian expansions: multivariate case FK 2010

Let me introduce here the multivariate case:

$$\Phi_i \equiv \ln \rho_i - \langle \ln \rho \rangle = s_i - \mu_i, \quad \nu_i \equiv \sum_j S_{ij}^{-1/2} \Phi_i, \quad (6)$$

$$s_i = \ln(
ho_i/\langle
ho
angle) = \ln(1 + \delta_{\mathrm{M}i})$$

Multidimensional Edgeworth expansion

$$P(\mathbf{\Phi}) = G(\boldsymbol{\nu}) \Big[1 + \frac{1}{3!} \sum_{i'j'k'} \langle \Phi_{i'} \Phi_{j'} \Phi_{k'} \rangle \sum_{ijk} S_{ii'}^{-1/2} S_{jj'}^{-1/2} S_{kk'}^{-1/2} h_{ijk}(\boldsymbol{\nu}) \\ + \frac{1}{4!} \sum_{i'j'k'l'} \langle \Phi_{i'} \Phi_{j'} \Phi_{k'} \Phi_{l'} \rangle \sum_{ijkl} S_{ii'}^{-1/2} S_{jj'}^{-1/2} S_{kk'}^{-1/2} S_{ll'}^{-1/2} h_{ijkl}(\boldsymbol{\nu}) + \dots \Big],$$
(7)

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Lognormal model

• Oth order: lognormal model $(G(\nu) \rightarrow \mathcal{P}(\delta_{\mathrm{M}}|\mathbf{S}))$ $\langle \ln \rho_i \rangle = \ln \langle \rho \rangle + \mu_i$

$$\mathcal{P}(\boldsymbol{\delta}_{\mathrm{M}}|\mathbf{S}) = \frac{1}{\sqrt{(2\pi)^{N_{\mathrm{cells}}} \mathrm{det}(\mathbf{S})}} \prod_{k} \frac{1}{1 + \delta_{\mathrm{M}k}}$$

$$\times \exp\left(-\frac{1}{2} \sum_{ij} \left(\ln(1 + \delta_{\mathrm{M}i}) - \mu_{i}\right) S_{ij}^{-1} \left(\ln(1 + \delta_{\mathrm{M}j}) - \mu_{j}\right)\right),$$
(8)

multidimensional implementation for matter field reconstructions: FK, Jasche & Metcalf 2009; applied to SDSS DR7: Jasche, FK, Li & Ensslin 2010 when $\delta_M \ll 1 \rightarrow$ Gauss distribution

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Lognormal model

• Oth order: lognormal model $(G(\nu) \rightarrow \mathcal{P}(\delta_{\mathrm{M}}|\mathbf{S}))$ $\langle \ln \rho_i \rangle = \ln \langle \rho \rangle + \mu_i$

$$\mathcal{P}(\boldsymbol{\delta}_{\mathrm{M}}|\mathbf{S}) = \frac{1}{\sqrt{(2\pi)^{N_{\mathrm{cells}}} \mathrm{det}(\mathbf{S})}} \prod_{k} \frac{1}{1 + \delta_{\mathrm{M}k}}$$

$$\times \exp\left(-\frac{1}{2} \sum_{ij} \left(\ln(1 + \delta_{\mathrm{M}i}) - \mu_{i}\right) S_{ij}^{-1} \left(\ln(1 + \delta_{\mathrm{M}j}) - \mu_{j}\right)\right),$$
(8)

multidimensional implementation for matter field reconstructions: FK, Jasche & Metcalf 2009; applied to SDSS DR7: Jasche, FK, Li & Ensslin 2010 when $\delta_M \ll 1 \rightarrow$ Gauss distribution

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Definition of the likelihood

- Discreteness of the galaxy distribution: shot noise
- Galaxy selection function in a magnitude limited survey
- Link between underlying matter field and the galaxy field
- Discrete Press-Schechter: Borel distribution (Epstein 1983)
 Gravitothermal dynamics (Saslaw 1986, Itoh et al 1988, Sheth 1995)
- Non-Poissonian distribution (FK in prep)

$$\mathcal{P}(\{N_{k}^{g}\}|\{\lambda_{k}\},\mathbf{Q}) = \prod_{k} \frac{\sum_{j} (\delta_{k,j}^{K} - Q_{k,j})\lambda_{j}}{N_{k}^{g}!}$$
$$\times \left(\sum_{l} (\delta_{k,l}^{K} - Q_{k,l})\lambda_{l} + \sum_{m} Q_{k,m} N_{m}^{g}\right)^{N_{k}^{g}-1}$$
$$\times \exp\left(-\sum_{n} (\delta_{k,n}^{K} - Q_{k,n})\lambda_{n} - \sum_{o} Q_{k,o} N_{o}^{g}\right)$$
(9)

Francisco-Shu Kitaura Bayesian reconstruction

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Define the likelihood: nature of the observable

For a sparse sample: Poisson limit

$$\mathcal{P}(\{N_k^{\mathrm{g}}\}|\{\lambda_k\}) = \prod_k \frac{\lambda_k^{N_k^{\mathrm{g}}} \exp\left(-\lambda_k\right)}{N_k^{\mathrm{g}}!} \tag{10}$$

full treatment: FK & Ensslin 2008; FK, Jasche & Metcalf 2009

Observation process: radial selection function and sky mask binomial process: either we see the galaxy or not

$$\lambda_i \equiv w_i \lambda_i' \tag{11}$$

treatment proposed in FK, Jasche, Li, Ensslin, Metcalf, Wandelt, Lemson & White 2009

• the correlation is encoded in the underlying density field in λ_k

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Link between the prior and the likelihood

galaxy bias

$$\delta_{\mathrm{g}i} = B(\boldsymbol{\delta}_{\mathrm{M}})_i, \qquad (12)$$

Fry & Gaztanaga 93 (generalized)

$$\delta_{gi} = \sum_{j} B_{ij}^{1} \delta_{Mj} + \delta_{Mi} \sum_{j} B_{ij}^{2} \delta_{Mj} + \dots, \qquad (13)$$

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Response operator

Response operator

$$\lambda_{k} = \lambda_{k}(\boldsymbol{\delta}_{\mathrm{M}}) = R(\boldsymbol{\delta}_{\mathrm{g}}(\boldsymbol{\delta}_{\mathrm{M}}))_{k}, \qquad (14)$$

$$\lambda_k = w_k \bar{N} (1 + B(\delta_{\mathrm{M}})_k), \qquad (15)$$

$$\lambda_k = w_k \bar{N} (1 + b \delta_{\mathrm{M}k}), \qquad (16)$$

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

(17)

Bayes theorem: the posterior

$$\mathcal{P}(\boldsymbol{\delta}_{\mathrm{M}}|\mathbf{\mathsf{N}},\mathbf{\mathsf{S}}) = rac{\mathcal{P}(\boldsymbol{\delta}_{\mathrm{M}}|\mathbf{\mathsf{S}})\mathcal{P}(\mathbf{\mathsf{N}}|\boldsymbol{\lambda}(\boldsymbol{\delta}_{\mathrm{M}}))}{\int\mathrm{d}\boldsymbol{\delta}_{\mathrm{M}}\,\mathcal{P}(\boldsymbol{\delta}_{\mathrm{M}}|\mathbf{\mathsf{S}})\mathcal{P}(\mathbf{\mathsf{N}}_{k}|\boldsymbol{\lambda}(\boldsymbol{\delta}_{\mathrm{M}}))},$$

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Bayes theorem: the posterior

$$\mathcal{P}(\boldsymbol{\delta}_{\mathrm{M}}|\mathbf{N},\mathbf{S}) \propto \prod_{i} \frac{1}{1+\delta_{\mathrm{M}i}} \exp\left(-\frac{1}{2}\sum_{ij}\left(\ln\left(1+\delta_{\mathrm{M}i}\right)-\mu_{i}\right)S_{ij}^{-1}\left(\ln\left(1+\delta_{\mathrm{M}j}\right)-\mu_{j}\right)\right) \times \left[1+\frac{1}{3!}\sum_{i'j'k'}\left\langle\Phi_{i'}\Phi_{j'}\Phi_{k'}\right\rangle\sum_{ijk}S_{ii'}^{-1/2}S_{jj'}^{-1/2}S_{kk'}^{-1/2}h_{ijk}(\boldsymbol{\nu}) + \frac{1}{4!}\sum_{i'j'k'l'}\left\langle\Phi_{i'}\Phi_{j'}\Phi_{k'}\Phi_{l'}\right\rangle\sum_{ijkl}S_{ii'}^{-1/2}S_{jj'}^{-1/2}S_{kk'}^{-1/2}S_{ll'}^{-1/2}h_{ijkl}(\boldsymbol{\nu}) + \dots\right] \times \prod_{k}\frac{\left(w_{k}\bar{N}(1+b\delta_{\mathrm{M}k})\right)^{N_{k}}\exp\left(-w_{k}\bar{N}(1+b\delta_{\mathrm{M}k})\right)}{N_{k}!},$$
(18)

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Bayes theorem: the posterior

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Maximum a posteriori

• Let us define the energy $E(\mathbf{s})$

$$E(\mathbf{s}) \equiv -\ln\left(\mathcal{P}\left(\mathbf{s}|\mathbf{N},\mathbf{S}\right)\right),\tag{19}$$

MAP

$$\frac{\partial E(\mathbf{s})}{\partial s_l} = 0, \tag{20}$$

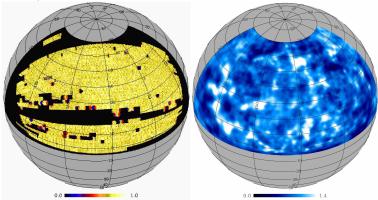
 Krylov conjugate gradient schemes (FK & Ensslin 2008; Jasche, FK, Wandelt, Ensslin 2009; FK, Jasche, & Metcalf 2009)

$$s_i^{j+1} = s_i^j - \sum_k T_{ik} \frac{\partial E(\mathbf{s})}{\partial s_k}, \qquad (21)$$

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Results: Wiener filter reconstruction of the SDSS DR6

Wiener-filter with the ARGO code: FK, Jasche, Li, Ensslin, Metcalf, Wandelt, Lemson & White 2009

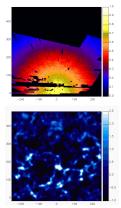


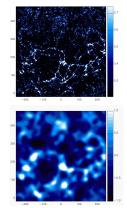
Francisco-Shu Kitaura

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Results: detection of a super-void in the SDSS DR6

(about 250.000 galaxies from the main sample)





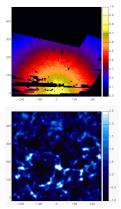
FK, Jasche, Li, Ensslin, Metcalf, Wandelt, Lemson & White 2009

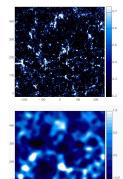
Francisco-Shu Kitaura

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Results: detection of a super-void in the SDSS DR6

(about 250.000 galaxies from the main sample) \rightarrow cluster prediction



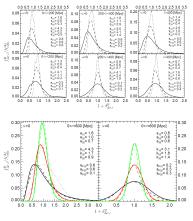


FK, Jasche, Li, Ensslin, Metcalf, Wandelt, Lemson & White 2009

Francisco-Shu Kitaura

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Results: matter statistics in the SDSS DR6



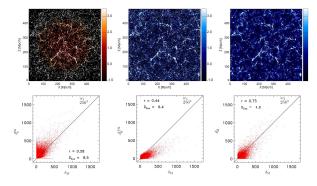
FK, Jasche, Li, Ensslin, Metcalf, Wandelt, Lemson & White 2009

Francisco-Shu Kitaura Bayesian reconstruction

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Results: lognormal filter against Wiener filter and inverse weighting

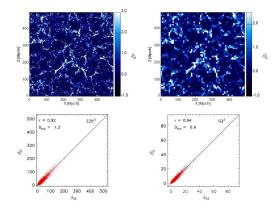
tests with the Millenium Run including selection function effects (about 350.000 mock galaxies)



Francisco-Shu Kitaura

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

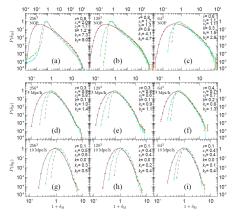
Results: lognormal filter against Wiener filter and inverse weighting



Francisco-Shu Kitaura Bayesian reconstruction

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Results: matter statistics in the lognormal reconstruction



FK, Jasche & Metcalf 2009 (upgrade of the ARGO code)

Francisco-Shu Kitaura Bayesian reconstruction

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Sampling the posterior

 Hamiltonian sampling (Taylor et al 2010, Jasche & FK 2010, FK, Simona Gallerani & Andrea Ferrara 2010)

$$H(\mathbf{s},\mathbf{p}) = K(\mathbf{p}) + E(\mathbf{s}),$$
 (22)

kinetic term with a given mass as the variance for the momenta

$$\mathcal{K}(\mathbf{p}) = \frac{1}{2} \mathbf{p}^{\dagger} \mathbf{M}^{-1} \mathbf{p}, \qquad (23)$$

Marginalization over the momenta

$$P(\mathbf{s},\mathbf{p}) = \frac{e^{-H}}{Z_H} = \frac{e^{-K}}{Z_K} \frac{e^{-E}}{Z_E} = P(\mathbf{p})P(\mathbf{s}),$$
(24)

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Sampling the posterior

• Hamiltonian evolution equations: $(\mathbf{s}, \mathbf{p}) \rightarrow (\mathbf{s}', \mathbf{p}')$

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = -\frac{\partial H}{\partial \mathbf{s}} = -\frac{\partial E}{\partial \mathbf{s}},$$
(25)
$$\frac{\mathrm{d}\mathbf{s}}{\mathrm{d}t} = \frac{\partial H}{\partial \mathbf{p}} = \mathbf{M}^{-1}\mathbf{p},$$
(26)

Metropolis-Hastings acceptance step

$$p_a = \min(1, e^{-\delta H}), \tag{27}$$

 $\delta H = H(\mathbf{s}', \mathbf{p}') - H(\mathbf{s}, \mathbf{p}) \rightarrow$ we do not care about the evidence!

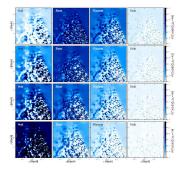
Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Results: matter field reconstruction of the SDSS DR7 with Hamiltonian sampling and the lognormal prior

deformation tensor of the grav.
 Pot. Φ:

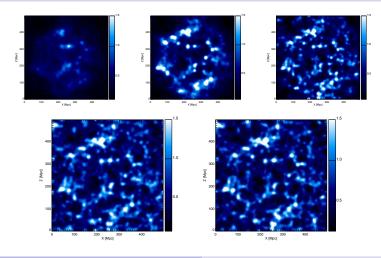
$$T_{ij} = \frac{\partial^2 \Phi}{\partial x_i \partial x_j} \qquad (28)$$

- eigenvalues $\lambda_1 \ge \lambda_2 \ge \lambda_3$, > 0: contraction, < 0: expansion
- classification: void: all < 0, sheet $1\lambda > 0$, filament $2\lambda > 0$, halo: $3\lambda > 0$ (with threshold see Forero-Romero et al 2009) Jasche, FK, Li & Ensslin 2010



Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

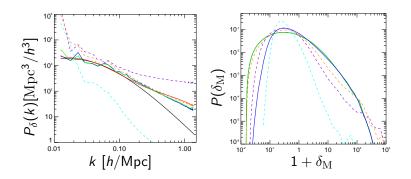
Skewed matter statistics: FK in prep



Francisco-Shu Kitaura

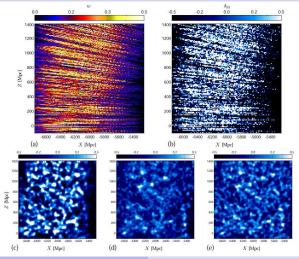
Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Skewed matter statistics



Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

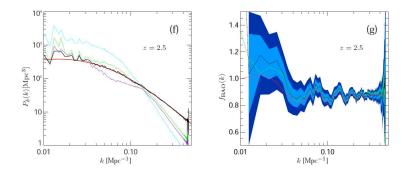
Lyman alpha forest 3D



Francisco-Shu Kitaura

Definition of the prior Definition of the likelihood Link between the prior and the likelihood Bayes theorem: the posterior Maximum a posteriori MCMC Sampling

Lyman alpha forest 3D



FK, Simona Gallerani & Andrea Ferrara 2010 Simona Gallerani, FK & Andrea Ferrara 2010

Conclusions

- There is a need to compare observations with theory as precisely as possible.
- Observations are plagued by many uncertainties which require a statistical treatment.
- The Bayesian approach is flexible and clear.
- We have shown that we can deal with complex models in this framework.
- There is a lot to do in Cosmology!