
Introduction
Bayesian approach

Conclusions

Bayesian reconstruction of the Cosmological

Large Scale Structure

Francisco-Shu Kitaura

Leibniz Institute for Astrophysics (AIP)

May 31, 2011

Francisco-Shu Kitaura Bayesian reconstruction



Introduction
Bayesian approach

Conclusions

Introduction

the cosmological large-scale structure encodes a wealth of
information about the evolution and origin of the Universe

the data are plagged by many observational effects (mask,
selection function, bias ...)

statistical treatment is necessary

compare observations with theory

study structure formation
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Bayes theorem: the posterior

P(s|d,p) =
P(s|p)P(d|s,p)

∫

dsP(s|p)P(d|s,p)
, (1)

Posterior=prior×likelihood/evidence

−→ clear representation of the assumptions
−→ can be easily extended to nonlinear cases
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Bayesian inference steps

Definition of the prior: knowledge of the underlying signal

Definition of the likelihood: nature of the observed data

Linking the prior to the likelihood: link signal to the data

Bayes theorem: the posterior

Maximization of the posterior: MAP

Sampling the posterior: MCMC
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Physical motivation: model I FK & Raul Angulo in prep

Lagrangian perturbation theory: displacement field

x = q+Ψ . (2)

Mass conservation:
ρ(x, t)dx = 〈ρ(ti )〉dq . (3)

The inverse of the Jacobean leads to the overdensity field:

1 + δ(x(q, t)) = J(q, t)−1 , (4)

with

J(q, t) =

∣

∣

∣

∣

∂x

∂q

∣

∣

∣

∣

. (5)
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Testing model I with MR

Forward relation from z = 127 to z = 0:
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Testing model I with MR

Inverse relation from z = 0 to z = 127:
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Testing model I and II with MR FK & Raul Angulo in prep

Cell-to-cell comparison:
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Testing model I and II with MR: peculiar motions

FK, Raul Angulo, Yehuda Hoffman & Stefan Gottloeber in prep
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Non-Gaussian expansions

relax the Gaussian-Lognormal assumption

skewed Gaussian Edgeworth expansion (univariate case:
Juszkiewicz, Bouchet & Colombi 93)

skewed lognormal model with the 1D Edgeworth exansion
(univariate case: Colombi 94)
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Non-Gaussian expansions: multivariate case FK 2010

Let me introduce here the multivariate case:

Φi ≡ ln ρi − 〈ln ρ〉 = si − µi , νi ≡
∑

j

S
−1/2
ij Φi , (6)

si = ln(ρi/〈ρ〉) = ln(1 + δMi )

Multidimensional Edgeworth expansion

P(Φ) = G(ν)
[

1 +
1

3!

∑

i′j′k′

〈Φi′Φj′Φk′〉
∑

ijk

S
−1/2
ii′

S
−1/2
jj′

S
−1/2
kk′

hijk(ν)

+
1

4!

∑

i′j′k′l′

〈Φi′Φj′Φk′Φl′〉
∑

ijkl

S
−1/2
ii′

S
−1/2
jj′

S
−1/2
kk′

S
−1/2
ll′

hijkl(ν) + . . .
]

, (7)
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Lognormal model

0th order: lognormal model (G(ν) → P(δM|S))
〈ln ρi 〉 = ln〈ρ〉+ µi

P(δM|S) =
1

√

(2π)Ncellsdet(S)

∏

k

1

1 + δMk

(8)

×exp

(

−
1

2

∑

ij

(ln(1 + δMi )− µi ) S
−1
ij (ln(1 + δMj )− µj )

)

,

multidimensional implementation for matter field reconstructions:
FK, Jasche & Metcalf 2009; applied to SDSS DR7: Jasche, FK, Li & Ensslin 2010

when δM ≪ 1 → Gauss distribution
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Definition of the likelihood

Discreteness of the galaxy distribution: shot noise

Galaxy selection function in a magnitude limited survey

Link between underlying matter field and the galaxy field

Discrete Press-Schechter: Borel distribution (Epstein 1983)
Gravitothermal dynamics (Saslaw 1986, Itoh et al 1988, Sheth 1995)

Non-Poissonian distribution (FK in prep )

P({Ng

k }|{λk},Q) =
∏

k

∑

j
(δKk,j − Qk,j)λj

N
g

k !

×

(

∑

l

(δKk,l −Qk,l )λl +
∑

m

Qk,mN
g
m

)N
g

k
−1

×exp

(

−
∑

n

(δKk,n − Qk,n)λn −
∑

o

Qk,oN
g
o

)

(9)
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Define the likelihood: nature of the observable

For a sparse sample: Poisson limit

P({Ng

k }|{λk}) =
∏

k

λ
N
g

k

k exp (−λk)

N
g

k !
(10)

full treatment: FK & Ensslin 2008; FK, Jasche & Metcalf 2009

Observation process: radial selection function and sky mask binomial
process: either we see the galaxy or not

λi ≡ wiλ
′

i (11)

treatment proposed in FK, Jasche, Li, Ensslin, Metcalf, Wandelt, Lemson
& White 2009

the correlation is encoded in the underlying density field in λk
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Link between the prior and the likelihood

galaxy bias

δgi = B(δM)i , (12)

Fry & Gaztanaga 93 (generalized)

δgi =
∑

j

B1
ijδMj + δMi

∑

j

B2
ijδMj + . . . , (13)
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Response operator

Response operator

λk = λk(δM) = R(δg(δM))k , (14)

λk = wkN̄(1 + B(δM)k) , (15)

λk = wkN̄(1 + bδMk) , (16)
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Bayes theorem: the posterior

P(δM|N,S) =
P(δM|S)P(N|λ(δM))

∫

dδM P(δM|S)P(Nk |λ(δM))
, (17)
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Bayes theorem: the posterior

P(δM|N,S)

∝
∏

l

1

1 + δMl

exp

(

−
1

2

∑

ij

(ln (1 + δMi )− µi ) S
−1
ij (ln (1 + δMj )− µj )

)

×[1 +
1

3!

∑

i′j′k′

〈Φi′Φj′Φk′〉
∑

ijk

S
−1/2

ii′
S

−1/2

jj′
S

−1/2

kk′
hijk(ν)

+
1

4!

∑

i′j′k′ l′

〈Φi′Φj′Φk′Φl′〉
∑

ijkl

S
−1/2
ii′

S
−1/2
jj′

S
−1/2
kk′

S
−1/2
ll′

hijkl(ν) + . . . ]

×
∏

k

(wk N̄(1 + bδMk ))
Nk exp

(

−wk N̄(1 + bδMk )
)

Nk !
, (18)
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Bayes theorem: the posterior
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Maximum a posteriori

Let us define the energy E (s)

E (s) ≡ − ln (P (s|N,S)) , (19)

MAP

∂E (s)

∂sl
= 0, (20)

Krylov conjugate gradient schemes (FK & Ensslin 2008; Jasche, FK, Wandelt,

Ensslin 2009; FK, Jasche, & Metcalf 2009)

s
j+1
i = s

j
i −

∑

k

Tik

∂E (s)

∂sk
, (21)
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Results: Wiener filter reconstruction of the SDSS DR6

Wiener-filter with the ARGO code: FK, Jasche, Li, Ensslin, Metcalf,

Wandelt, Lemson & White 2009
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Results: detection of a super-void in the SDSS DR6

(about 250.000 galaxies from the main sample)

FK, Jasche, Li, Ensslin, Metcalf, Wandelt, Lemson & White 2009
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Results: detection of a super-void in the SDSS DR6

(about 250.000 galaxies from the main sample)→ cluster prediction

FK, Jasche, Li, Ensslin, Metcalf, Wandelt, Lemson & White 2009
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Results: matter statistics in the SDSS DR6

FK, Jasche, Li, Ensslin, Metcalf, Wandelt, Lemson & White 2009
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Results: lognormal filter against Wiener filter and inverse

weighting

tests with the Millenium Run including selection function effects (about
350.000 mock galaxies)
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Results: matter statistics in the lognormal reconstruction

FK, Jasche & Metcalf 2009 (upgrade of the ARGO code)
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Sampling the posterior

Hamiltonian sampling (Taylor et al 2010, Jasche & FK 2010, FK, Simona Gallerani

& Andrea Ferrara 2010)

H(s,p) = K (p) + E (s), (22)

kinetic term with a given mass as the variance for the momenta

K (p) =
1

2
p†M−1p, (23)

Marginalization over the momenta

P(s,p) =
e−H

ZH

=
e−K

ZK

e−E

ZE

= P(p)P(s), (24)
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Sampling the posterior

Hamiltonian evolution equations: (s,p) → (s′,p′)

dp

dt
= −

∂H

∂s
= −

∂E

∂s
, (25)

ds

dt
=

∂H

∂p
= M−1p, (26)

Metropolis-Hastings acceptance step

pa = min(1, e−δH ), (27)

δH = H(s′,p′)− H(s,p) → we do not care about the evidence!
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Results: matter field reconstruction of the SDSS DR7 with

Hamiltonian sampling and the lognormal prior

deformation tensor of the grav.
Pot. Φ:

Tij =
∂2Φ

∂xi∂xj
(28)

eigenvalues λ1 ≥ λ2 ≥ λ3, > 0:
contraction, < 0: expansion

classification: void: all< 0,
sheet 1λ> 0, filament 2λ > 0,
halo: 3λ > 0 (with threshold
see Forero-Romero et al 2009)

Jasche, FK, Li & Ensslin 2010
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Skewed matter statistics: FK in prep
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Skewed matter statistics
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Lyman alpha forest 3D
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Lyman alpha forest 3D

FK, Simona Gallerani & Andrea Ferrara 2010

Simona Gallerani, FK & Andrea Ferrara 2010
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Conclusions

There is a need to compare observations with theory as precisely as
possible.

Observations are plagued by many uncertainties which require a statistical
treatment.

The Bayesian approach is flexible and clear.

We have shown that we can deal with complex models in this framework.

There is a lot to do in Cosmology!
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