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Abstract I describe the modelization of stellar ensembles in terms ofprobability
distributions. This modelization is primary characterized by the number of stars in-
cluded in the considered resolution element whatever its physical (stellar cluster)
or artificial (pixel/IFU) nature. It provides a solution of thedirect problem of char-
acterize probabilistically the observables of stellar ensembles as a function of their
physical properties. In addition, this characterization implies that intensive proper-
ties (like color indices) are intrinsically biased observables, although the bias de-
creases when the number of stars in the resolution element increases. In the case
of a low number of stars in the resolution element (N < 105), the distributions of
intensive and extensive observables following non trivialprobability distributions.
Such situation a can be computed by means of Monte Carlo simulations where data
mining techniques would be applied.

Regarding theinverse problem of obtain physical parameters from observational
data, I show how some of the scatter in the data provides valuable physical infor-
mation, since related with the system size (and the number ofstar in the resolution
element). However, to make use of such an information it is needed to follow itera-
tive procedures in the data analysis.

1 Introduction

We know for sure that galaxies are formed by stars. We also know that not all stars
are equal, but they have different characteristics depending on some physical pa-
rameters, like their mass, metallicity and evolutionary stage. Observationally, in a
first approximation neglecting the particular peculiarities of each individual star, we
can classify stars according their position in a color-magnitude diagram (maybe one
of the greatest success in the application of pre-computational data mining to as-
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trophysics). I show in Fig. 1 the color-magnitude diagram obtained fromHipparcos
data1. Such a diagram shows, at least, two relevant features:

Fig. 1 Hertzsprung-Russell
(MV , B−V ) diagram for the
41704 single stars from the
Hipparcos Catalogue with
relative distance precision
σπ/π < 0.2 andσ(B−V ) less
than or equal to 0.05 mag.
Colours indicate number of
stars in a cell of 0.01 mag in
(B−V ) and 0.05 mag inV
magnitude (MV ).
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• Stars are located in particular regions of the diagram. Currently we know that
such regions are the solutions of stellar evolution theory when collapsed in par-
ticular observable axes, so only particular regions of the color magnitude diagram
are allowed. We can easily identify different areas according theevolutionary
state of the stars in the sample. As an example, the Main Sequence (MS, nuclear
Hydrogen burning phase) runs from top-left to bottom-rightthe figure, and the
Red Giant (RG) phase lies in the middle-right area. Each evolutionary stage is
characterized by the internal structure of the star, which is defined by the mass
and metallicity of the star at birth and the age of the star.

• Not all regions containing stars have similar density. We also know that it is due
to two different reasons:

1. The density of the area is proportional to the time spend ineach evolutionary
phase, so the MS, where stars last 90% of their live, are more populated that
RG phases. Also, the lifetimes of different Post-MS phases explain the relative
stellar densities in the color-magnitude diagram for Post-MS regions.

1 Caption and figure taken from the Hipparcos site at
http://www.rssd.esa.int/index.php?project=HIPPARCOS
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2. However, the variation of density along the MS cannot be explained just by the
fact than the more massive the star, the more luminous and thefaster consump-
tion of their nuclear Hydrogen fuel; neither by the different ages of the stars in
the sample. Massive stars areintrinsically less common than low mass stars:
Stars of different masses are not formed with equal probability, but the mass
distribution of starsat birth, mt=0 follows a probability distribution called the
Initial Mass Function (IMF,φ(mt=0)), which, at least in its upper mass range
(mt=0 > 2M⊙), can be approximated by a power law,φ(mt=0) ∝ m−α

t=0, with
exponentα ∼ 2.35 obtained by Salpeter [8].

In the case of color-magnitude diagrams, making use of stellar evolution theory,
we can obtain the physical properties of each star in the sample: ages, stellar masses
(e.g. VOSA by Bayo et al. [1]), and from this information, we can obtain properties
of the ensemble as an entity (age of a cluster, IMF, star formation processes in a
region, amount of gas transformed into stars, etc...).

Of course, we can obtain the maximum information about an stellar ensemble
when we know all the components in the ensemble. However, it is not the common
case. Even in deep observations of resolved stellar clusters there are stars so dim
that are not detected. In a more general case, we have no access to the emission of
the individual stars, but just to the emission of the total ensemble, without further
information of the individual components. It is the common case in extragalactic
studies.

2 Modeling stellar ensembles

The modeling of stellar ensembles aims to provide information about the physical
parameters of an stelar ensemble (star formation history, mass of the system, chem-
ical evolution history) from just the integrated light obtained from the ensemble.
Mathematically it means to recover a the primitive of a definite integral. Although
the problem looks to be highly degenerate it can be solved (orat least we can suggest
a suitable range of solutions) thanks to the restrictions imposed by stellar evolution
theory, as it is the case of anlysis of color-magnitude diagrams. Let me explain it in
some detail.

The emission of the ensemble is usually dominated by just a few high luminous
stars, and most of low luminous stars in the system (i.e. the ones that defines the
total mass in the system) are undetected. In the other hand, the most luminous stars
are Post-MS stars, which relative densities in each evolutionary phase is just propor-
tional to the lifetime of hte phase. These lifetimes dependson the initial mass and
the age of the stars in the Post-MS. In addition, there is a proportionality between
the density of Post-MS stars (which dominates the integrated light) and the MS
stars (with a low contribution to the integrated light) given by the IMF. Finally, the
different relative contributions are strongly dependent on the observed wavelength
range. So, combining the information from different wavelengths we can make in-
ferences about the Post-MS population and infer from that the physical properties of
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the ensemble including the total amount of mass into stars, star formation histories
etc.

This situation is related with the properties of the, so called,wild distributions
[9], or distributions where the highest possible value, although with a low proba-
bility, is able to dominate the mean value of the distribution. Thewild distribution
responsible of the success on to obtain information from theintegrated light is the
stellar Luminosity Distribution Function, sLDF, it means,the probability of find an
star with a given luminosity. Let us illustrate it with a simple example (we refer [5]
for more details):

Let us assume a system where all stars are in the MS and that thestars follows
a mass-luminosity relationℓ ∝ mβ . Assuming a power-law IMF,φ(m) ∝ m−α ,
we can define the sLDFϕL(ℓ) as:

ϕL(ℓ) = φ(m)×
(

dℓ(m)

dm

)−1

= Aℓ
− α

β · 1
β
ℓ
− β−1

β =
A
β
ℓ

1−α−β
β . (1)

beingA a normalization constant soϕL(ℓ) is normalized to one. The mean
value of the sLDF is then:

µ ′
1 =

A
β

∫ ℓmax

ℓmin

ℓ · ℓ
1−α−β

β dℓ=
A

1+β −α
·
(

ℓ
1+β−α

β
max − ℓ

1+β−α
β

min

)

. (2)

If 1 + β −α > 0, the mean luminosity is driven byℓmax. In a typical sit-
uation withβ ≈ 3, the most luminous stars will dominate the luminosity if
α < 4: this is the case of Salpeter’s IMF [8].

Trivially, if ϕL(ℓ) is normalized to the number of stars in the ensemble,Ntot, the
value obtained, that is〈Ltot〉= Ntot×µ ′

1, corresponds to themean total luminosity
of the ensemble (I will back to this point latter). When Post-MS stars enter in the
game the situation is ever more extreme since their luminosity are even larger than
the one they had in the MS. So, the sLDF turns into a power-law distribution due
to MS stars plus a high luminosity tail with variable structure (according the age of
Post-MS stars). Given that themean amount of gas transformed into stars,〈Mtot〉 is
also proportional toNtot (also provided by the IMF) we can obtain age dependent
mass to luminosity ratios,〈Ltot〉/〈Mtot〉, which allow to obtain a value ofMtot

from the observedLtot once the age is obtained.
The main technique, called evolutionary population synthesis, was mainly devel-

oped by B. Tinsley [11] in the 70’s. Currently there are several codes which provide
the mean values of the sLDF (although normalized to different values and defined
as integrated emission instead a mean value), likeStarburst99 by Leitherer et al.
[7] or Bruzual & Charlot models [2].
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However, since we work with awild distribution function (the sLDF) the mean
value of such distribution is not the full history: The mean value is not a good proxy
to make inferences (contrary to the gaussian case). Our manyquestion know is how
the functional form of the sLDF change when we consider ensembles of stars. So
we must combine each of the possible star in the ensemble properly [5].

As a general rule, the probability distribution function, PDF, resulting from the
sum of several variables is obtained as the convolution of the PDFs of the individual
variables. For example, letϕx(x) be the PDF of a variablex andϕy(y) the PDF
of a variabley independent ofx. The probability density of a variableu = x+ y is
given by the product of the probabilities ofϕx(x) andϕy(y) summed over all the
combinations ofx andy such thatu = x+ y, which is the definition of convolution:

ϕu(u) =
∫ ∞

−∞
ϕx(z)ϕy(u− z)dz = ϕx(x) ⊗ ϕy(y). (3)

In our case, we are assuming that all the stars have luminosities distributed
following the same distribution function,ϕL(ℓ), and that the stars are indepen-
dent on each other. Therefore, the population Luminosity Distribution Func-
tion, pLDF, of an ensemble ofNtot stars is obtained by convolvingϕL(ℓ) with
itself Ntot times:

ϕLtot(L ) =

Ntot
︷ ︸︸ ︷

ϕL(ℓ)⊗ϕL(ℓ)⊗ ... ⊗ϕL(ℓ) . (4)

Hence, if the sLDF is known, the pLDF of an ensemble ofNtot stars can be com-
puted by means of a convolution process. Self-convolutionshave some additional
interesting properties, in particular that the cumulants of the pLDF are justNtot

times the cumulants of the sLDF. So, trivially,

µ ′
1(L ) = Ntot µ1(ℓ), κ2(L ) = σ2(L ) = Ntot κ2(ℓ),

γ1(L ) =
1√
Ntot

γ1(ℓ), γ2(L ) = 1
Ntot

γ2(ℓ), (5)

whereκ2 is the variance andγ1 and γ2 are the skewness and the kurtosis of the
corresponding distribution. Note that, in agreement with the central limit theorem,
γ1(L )→ 0 andγ2(L )→ 0 for large enoughNtot values, i.e. the distribution tends
to a Gaussian with a relative dispersion which also tends to zero.

Just for reference values, a gaussian approximation of the pLDF is reached for
stellar ensembles with total massMtot > 105M⊙ for visible bands andMtot >
107M⊙ for infrared bands [3, 5].
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Previous relations are useful to unveil the scale properties of LDFs, and obtain
situations where the pLDF can be properly approximate by a gaussian, so its mean
value can be use as a proxy for data analysis (I will back to this point latter). How-
ever, it is not sufficient for current astronomical research: the increasing spacial res-
olution and sensibility of current facilities implies a reduction in the number of stars
per resolution element (pixel, IFU, etc); the observation of faint sources provide ac-
cess to systems with an intrinsically low number of stars; the drastic reduction of
the observational error provides that observational data shows thephysical variance
(due to the pLDF variance among others) of stelar ensembles.

The convolution method, although theoretically plausible, contains technical dif-
ficulties: the wild nature of the sLDF, including gaps and bumps in the high luminos-
ity tail due to fast stellar evolutionary phases, needs a high resolution in the binning
of the sLDF for convolution. Alas, the large dynamic range inluminosities, from
10−2 L⊙ to 106 L⊙, makes the numerical computation unfeasible. So Monte Carlo
simulations are more useful to describe the resulting pLDF outside the gaussian
regimen.

3 Data mining on stellar ensembles simulations

The needing of sampling the pLDF for different situations isnot just the only rea-
son to use Monte Carlo simulations. In the previous SectionsI have just shown the
case of a single pLDF, which would corresponds to a given bandor wavelength
bin. But a real analysis of observational data makes use of several bands or wave-
length points. Given that different regions of the possibles sLDF (with a fixed set of
ensemble physical conditions) are dominated by the same setof stars in particular
evolutionary stages, strong (non necessarily linear) correlations between the sLDFs
are expected. In addition, the distribution nature of extensive quantities produce non
trivial rupture of the intensive character of assumed intensive quantities like color
and spectral indices commonly used in data analysis (see Fig. 2 below and [6] for
details). A formal solution is a multidimensional convolution process with a num-
ber of dimensions similar to the wavelength resolution in our observations, but it is
technically unfeasible as in the case of simple pLDFs, and, currently, the problem
remains unsolved.

Additional advantages of Monte Carlo simulations is to study situations where
the pLDF shows a bimodal behavior. These situations are expected for stelar ensem-
bles with a number of stars such the mean luminosity of the pLDF is near maximum
luminosityℓmax of the sLDF [4]. Bimodal distributions also appear when the simu-
lations make use of power-law distributions ofNtot. Unfortunately, there is no way,
but just Monte Carlo simulations, to identify and explore the situations when its
happens (see [4, 5] for more details).

The situation can be strongly improved by the use of Data Mining techniques
over simulations. As an example, I show in Fig. 2 a serendipity result of the analysis
of the Monte Carlo simulations of young stellar ensembles (see the caption and [12]
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for details). Although the result, once found, can be explained by the wild nature of
the corresponding pLDF for a low number of stars (Ntot < 104), it was not expected
a priori when simulations where performed.

Fig. 2 Extensive,Q(H0), vs.
Intensive,Teff, quantities in
the case of stellar population
Monte Carlo simulations.
Note that the intensive quan-
tity (formally independent of
the size of the sistem) is not
longer intensive in the case
of low populated clusters,
but correlates strongly with
the extensive quantity. Also
note bimodal features (right-
bottom box) in the region just
before the intensive quan-
tity becomes really intensive.
Figure from [12].
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4 The inverse problem: induced sampling

I must remind that interesting the results of stelar ensembles Monte Carlo simula-
tions would be, the final goal of the simulations is to provideanalysis tools to infer
physical quantities from observational data. Stellar ensembles models, whatever are
used in the form of pLDF mean values, cumulants oor the whole distribution, have
an intrinsic undefined parameter: the number of stars in the ensemble,Ntot, which is
in fact one of the physical parameters aimed to obtain from the models (remember
the discussion about the〈Ltot〉/〈Mtot〉 relationships).

Even in the case of gaussian pLDF, not just the mean value of the distribution
must be correctly fitted, but also their associated variance(which intimately depends
on Ntot). The only way to do that is to use traditional methods to guest a value of
the physical parameters in the model comparison, and iterate the method up using
the variance of the pLDF as a metric of fitting. Obviously, themethod is not valid
for no gaussian distributions the the meaning of the mean andvariance can not be
translated neither to representative values nor confidenceintervals. So, new methods
for analysis are needed in that cases.

Finally, for the case of observation with spatial resolution, we can advantage of
the intrinsic distribution ofNtot in the observational set: different resampling of the
observational set (varying artificially the size of the resolution element) must pro-
duce self consistent results in terms of physical parameters, since related ultimately
with the sLDF of the system, with scale in mean value and variance withNtot of
the considered resolution element. This methodology of induced sampling provides
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additional test about our inference ofNtot in the system. This method is similar to
bootstrapping the data, but including the physical model (theNtot dependent pLDF)
in the analysis of stelar ensembles.

However, the methodology I proposed here, has not been yet developed properly
in no analysis method (as far as I know).
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