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Abstract For users of the Gaia astrometric catalogue it will be essential to have ac-
cess to the covariance between any pair of astrometric parameters when computing
quantities that combine multiple catalogue parameters. The computation and stor-
age of the full covariance matrix for the expected 5× 109 astrometric parameters
(∼ 108 TeraByte) is however expected to be infeasible considering near-future stor-
age and floating-point capabilities. In this paper we explain (without going into the
mathematical details) how it might be practically feasible to estimate the covariance
between any pair of source parameters in a computationally efficient way, from a
reduced amount of data instead (∼2 TeraByte). We also include two examples, ex-
plaining how to practically compute the covariance for the average parallax of a star
cluster, and the acceleration of the solar system barycentre in a cosmological frame.

1 Introduction
The forthcoming ESA space astrometry mission Gaia, will provide the most com-
prehensive and accurate catalogue of astrometric data for galactic and astrophysical
research in the coming decades. For roughly 1 billion stars, quasars and other point
like objects (hereafter called ‘sources’) the five astrometric parameters (position,
parallax and proper motion) will be determined. These parameters will not be per-
fect: every derived parameter has an error, ultimately resulting from the combination
of a very large number of microscopic stochastic processes. The actual errors in the
Gaia catalogue are of course unknown, but can nevertheless be statistically charac-
terized, and in two forthcoming papers (1; 2) we derive and study the error properties
based on a simplified least-squares formulation of the astrometric solution.

For most applications it is sufficient to consider the first and second moments
of the errors, i.e., the expected values (biases), variances (or standard errors), and
covariances (or correlation coefficients). We assume that the biases are negligible,
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and therefore concentrate on the second moments, which are most generally de-
scribed by the covariance matrix. For an end user of the catalogue, knowledge of
the covariances is needed when estimating the uncertainty of quantities that com-
bine more than one astrometric parameter (see Sect. 4 for some examples). There-
fore, tools need to be developed to allow the efficient computation of the variance of
any scalar quantity y calculated from the N astrometric parameters in the catalogue
x = (x1, . . . xN). We can generally formulate this as y = f (x). Assuming that f is
linear for small errors, the variance of y is given by

Cov(y) = σ
2
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Ci j, (1)

with C = [Ci j] = Cov(x), and Ci j the covariance between astrometric parameters
xi and x j. More generally, we may want to characterize the errors of M different
scalar quantities calculated from the astrometric parameters, i.e., y = (y1, . . . , yM).
Introducing the M×N Jacobian matrix J of the partial derivatives Jm j = ∂ym/∂x j,
we have in analogy with Eq. (1)

Cov(y) = JCJ′. (2)

1.1 Efficient computation of the quadratic form

It should be noted that although ∂y/∂x is formally a vector of length N (∼ 5×109

for the entire Gaia Catalogue), most of the elements are zero, meaning that only a
subset of the N astrometric parameters are needed to compute y. Let us denote by n
the number of active astrometric parameters, i.e., for which ∂y/∂xi 6= 0. To evaluate
Eq. (1) we obviously do not need the full N×N matrix C, but only the submatrix of
size n×n corresponding to the active parameters. Taking into account the symmetry
of C this involves n(n−1)/2 non-redundant elements Ci j. For the more general case
of Eq. (2), the size of the submatrix of C corresponds to the n non-zero rows of J.
An important point to note is that in typical computations involving many stars, M is
usually much smaller than n. Consequently, the number of non-redundant elements
in Cov(y) that we want to compute, that is M(M−1)/2, is very much smaller than
the n(n−1)/2 non-redundant elements in C that enter into Eq. (2).

The goal of this paper is to explain (without going into the mathematical details)
how it might be possible to estimate Cov(y) in a computationally efficient way,
avoiding the intermediate stage of evaluating a very large number of elements Ci j
from the covariance matrix of the astrometric solution.

The question we want to address can be formulated quite simply: For a given
astrophysical problem we are given a list of the n active astrometric parameters
relevant for the problem, and the corresponding partial derivatives of the output
data (i.e., the non-zero rows of J). How can we evaluate Eq. (2) in a way that is
both accurate and computationally feasible? This question has two parts: accuracy
and feasibility. The accuracy depends on a number of simplifying assumptions and
approximations that will be discussed elsewhere; here we are mainly concerned with
the practical feasibility of the computation.
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2 Covariance model for Gaia astrometry
Before we describe our model let us first answer the question why one would need a
model for computing the covariances in the first place. Let us assume for a moment
that we have been able to compute (or estimate) the source covariance matrix for
a full Gaia solution. Given that the final solution will contain 109 sources the data
volume of the full matrix would be ∼ 108 TeraByte (TB), which seems a totally im-
practical amount of data to store and query efficiently. In (4) it was actually found
to be infeasible to invert the full normal matrix for Gaia considering current and
near-future available storage and floating-point capabilities. But independent of the
question if we could populate the full table by other means, or if such storage space
could be available at the time the final catalogue will come out, it is clearly desirable
that the covariance between any pair of source parameters can be computed from a
reduced amount of data (e.g. the final catalogue values themselves complemented
with some additional observation statistics).

2.1 A practical model

As Gaia is a ‘self-calibrating’ mission, not only the astrometric source parameters,
but also other ‘nuisance’ parameters will be estimated from the observations. We
will neglect the influence of the instrument calibration, but will include attitude
calibration as it may have very local influence across on the sky, which could render
their disentanglement more difficult (cf. 3, Sect. 1.4.6).

The astrometric parameters in the vector x are naturally grouped according to the
sources, with (usually) 5 parameters per source, corresponding to the two positional
components, the parallax, and the two proper motion components. From here on,
indices like i and j in the above expressions will refer to the sources, rather than the
astrometric individual parameters, so that xi is the subvector of the 5 astrometric pa-
rameters for source i, and Ci j is the 5×5 submatrix block containing the covariances
between the astrometric parameters of the two sources i and j.

For the estimation of the astrometric and attitude parameters it is demonstrated in
(1) that the source covariance matrix block between source i and j can be recursively
expanded as

Ci j = C(1)
i j +C(2)

i j + ...+C(p)
i j + ... (3)

Elements in C(1) are the covariances resulting from only estimating the source pa-
rameters from the observations assuming that the attitude is known. Since there is
no coupling between the sources, only the diagonal elements i = j are non-zero.
Elements in C(2) are the covariances resulting from only estimating the attitude pa-
rameters and propagating those covariances back to the sources covariance estima-
tion. Because each source is on average observed during 72 field-of-view transits
(meaning that it is coupled to the attitude parameters at those transit times), this sec-
ond covariance term will be non-zero for sources that are observed together at least
once (meaning that they have at least one attitude parameter in common). Going to
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higher terms, we find that the coupling between source and attitude parameters goes
recursively deeper:

(i) any odd term (p = 1,3, . . .) depends on the sources that have observations at
any of the attitude intervals involved in the previous term,

(ii) any even term (p = 2,4, . . .) depends on the attitude parameters that are cou-
pled to any of the sources involved in the previous term.

Of course the actual strength of the coupling depends on how many observations
were in common between the source/attitude parameter at each step, which is not
further discussed here; see (1) for further details.

For the practical computation of a covariance element Ci j (up to any term p) we
can use the recursive structure to combine the required data from a much reduced
amount of model input data (described in the next section) without the need to com-
pute and invert the full underlying normal matrix first.

2.2 Model input data

The expansion model described in the previous section allows us to approximate
the covariance between any pair of astrometric parameters to any level of accuracy
from the following data per source and field-of-view transit:

(i) partial derivatives of the along-scan observations with respect to the source
parameters (typically 5),

(ii) observation time,
(iii) combined weight of the observations.

As each source will on average have 72 field-of-view transits this results in 504 num-
bers per source. Uncompressed these data take up∼2 TB for one billion sources and
can populate lookup tables which use about the same amount of space. Note that in
this way we need to store about 108 times less information than would be needed
for the full covariance matrix.

3 Connectivity between source and attitude parameters
One important question that arises when considering the above recursive structure
for computing covariance elements is how much connections there actually are be-
tween the source and attitude parameters for each term. To illustrate this, we have
computed the connections resulting for two different sources, namely at position (0◦

, 0◦) and (0◦, 50◦) in ecliptic coordinates. Based on the nominal scanning law for
Gaia, this corresponds to positions on the sky which are rather poorly and overabun-
dantly sampled, with 64 and 186 field-of-view transits over 5 years, respectively.

3.1 Gaia-like simulation data

To test the connectivity for each term in Eq. (3) we initialize our covariance model
with artificially generated data for a 5 years mission between 2014 and 2019, for
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a set of 196,608 sources distributed in a uniform grid over the sky following a
HEALPix map (5) of depth 7 giving a typical source separation of 0.46◦. Since the
field-of-view size of Gaia is about 0.7× 0.7◦ this is a reasonable spatial sampling.
We sample the attitude with a 60 second interval (resulting in 2,629,800 attitude
intervals). A typical field-of-view transit consists of 10 observations during 45 sec-
onds, making this a reasonable time sampling as well. The covariance model and
the observation generator are part of our simulation software AGISLab.

3.2 Connectivity results

In Fig. 1 we show for both positions on the sky to which sources they are connected
in successively higher terms. Note that in both cases the source is connected to all
other sources within only three steps, demonstrating the high level of entanglement
of the astrometric solution which makes it well-conditioned.

In Fig. 2 we show for both positions on the sky, to which attitude intervals they
are connected in successively higher terms. We plot only the first six months of the
full five years of attitude since the scanning law will give a similar attitude filling
for subsequent half year periods; even so the time resolution of the plot is not high
enough to show all individual attitude intervals. Therefore we give a histogram of
the number of connected attitude intervals for each plot bin of 0.18 days (containing
263 attitude intervals).

These figures illustrate the connectivity of a given source (i) with itself, and are
relevant for computing the diagonal block element Cii of the covariance matrix. In
order to compute Ci j for i 6= j, only the common connections are relevant.

4 Example variance computations
4.1 Mean parallax of stars in a cluster

An obvious, but very useful property of objects in a cluster is that their dis-
tance is (almost) the same, therefore allowing the mean cluster distance to be es-
timated by averaging over the parallaxes of the individual stars. As correlations
between the stars at small angular separation are expected in the Gaia catalogue
(see 6), is is necessary to do a proper covariance computation to determine the sta-
tistical uncertainty of the cluster distance. For n stars the mean parallax will be
y = (ϖ1 + ...+ϖn)/n with ∂y/∂ϖi = n−1. Using Eq. (1) we find then

σ
2
y = n−2

∑
i∈n

∑
j∈n

Ci j (4)

The variance of the mean parallax can therefore be computed at successive higher
approximations (p) by considering the connections between all possible pairs (i, j)
of stars in the cluster, including (for p > 1) the ‘indirect’ connections via common
attitude intervals and other stars.
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4.2 Acceleration of the solar system barycentre

As an example involving the combination of astrometric data from many objects
scattered over the sky, we take the determination of the acceleration of the so-
lar system barycentre in a cosmological frame. Such an acceleration is produced
by asymmetries in the distribution of masses around the solar system at different
length scales, and is seen as an apparent ‘streaming’ motion of cosmological ob-
jects (mainly quasars) due to the changing stellar aberration. The main expected
acceleration is caused by the mass of the Galaxy within the solar circle and amounts
to about 2× 10−10 m s−2 directed towards the Galactic centre, and the observable
effect is that the quasars will appear to have a streaming motion towards the Galactic
centre, with an amplitude of 4 µas yr−1. However, deviations from this could be pro-
duced by local irregularities of the mass distribution, and it is therefore interesting
to measure the effect.

Based on data for n quasars, the weighted least-squares estimate of the accelera-
tion vector a (with 3 elements) is just a linear combination of the 2n observed proper
motion components, and the partial-derivative matrix M therefore has three columns
with non-negative elements only in the 2n rows corresponding to the quasar proper
motions. Since n is large, the number of terms to consider even for p = 1 is quite
large, and it may not be feasible to compute it as accurately as for a problem with
fewer sources.

5 Conclusion
In order to estimate the covariances of arbitrary functions of the astrometric data, we
propose to use a recursive algorithm based on structural data (about how the sources
and attitude intervals are connected, and the observation weights) that can be stored
relatively compactly. The accuracy of the estimates depends on the level to which
the recursions are taken, and are ultimately limited by available computing power.
The practical implementation and testing of this algorithm is an ongoing project.
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Fig. 1 Left: a source at ecliptic position (0◦ , 0◦), showing its connection to other sources for each
odd term in Eq. (3). We assign a black color to the sources that are new with respect to the previous
term (the sources from previous terms are shown in gray). Right: the same for a source at ecliptic
position (0◦, 50◦). In both cases the source is connected to all other sources on the sky within 3
steps. When computing the covariance between these two sources, one would need to consider, at
each term, the intersection between the corresponding left and right graphs. Maps are plotted in
International Celestial Reference System (ICRS) coordinates, centred on (0◦, 0◦).
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Connections Cov term 2 for alpha: 0.0 delta: 0.0   (0.00% of 2629801 intervals), plot bin 0.2d
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Connections Cov term 4 for alpha: 0.0 delta: 0.0   (1.35% of 2629801 intervals), plot bin 0.2d
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Connections Cov term 6 for alpha: 0.0 delta: 0.0   (70.06% of 2629801 intervals), plot bin 0.2d
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Connections Cov term 8 for alpha: 0.0 delta: 0.0   (100.00% of 2629801 intervals), plot bin 0.2d
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Connections Cov term 2 for alpha: 0.0 delta: 50.0   (0.01% of 2629801 intervals), plot bin 0.2d
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Connections Cov term 4 for alpha: 0.0 delta: 50.0   (2.48% of 2629801 intervals), plot bin 0.2d
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Connections Cov term 8 for alpha: 0.0 delta: 50.0   (100.00% of 2629801 intervals), plot bin 0.2d
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Fig. 2 Left: for a source at ecliptic position (0◦ , 0◦) we show the first six months of the full five
years of attitude. For each even term in Eq. (3) the number of connected attitude intervals is shown
in a histogram, having a bin size of 0.18 days (containing 263 attitude intervals). Right: the same
for a source at ecliptic position (0◦, 50◦). In both cases the attitude intervals in which the source
was observed are connected to all other attitude intervals within 3 steps.


