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Abstract The fitting of experimental or observational data to specificfunctional
forms requires high computational capacities in order to tackle with the complexity
of the calculations. This complexity makes compulsory the usage of efficient search
procedures, such as evolutionary algorithms. Evolutionary algorithms have proved
their capability to find sub-optimal high-quality solutions to problems with large
search space. In this context, Particle Swarm Algorithm andDifferential Evolution
are used to fit a data set to a serial expansion of Legendre polynomial. Concerning
the data set, 56 rotation curves of spiral galaxies are used to build up a serial ex-
pansion —physical meaningless— retaining the essential information of the curves.
The final goal of this work is two-fold: firstly, to provide a theoretical functional
form representing the features of the rotational curves of spiral galaxies in order to
be coupled to other computational models; and secondly, to demonstrate the appli-
cability of the evolutionary algorithms to the matching between astronomical data
sets and theoretical models.
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1 Introduction

This article focus on the construction of a model for the rotational curves of spiral
galaxies. For this, the observational data are normalized and merged, and next, fitted
to physical meaningless functional forms. Due to the large search space, Evolution-
ary Algorithms (EAs) are used to find sub-optimal high-quality solutions.

EAs, like Particle Swarm Algorithm (PSO) and Differential Evolution (DE) are
powerful methods for solving many tough optimization problems. In science, the
EAs have been profusely used to solve complex problems. In this work, PSO and
DE are implemented to adjust a large observational data set —56 rotational curves
of spiral galaxies— to functional forms. The huge volume of data under treatment
forces the use of this kind of techniques.

PSO and DE are well known EA, widely adopted and suitable for the first ap-
proximation to any optimization problem. Regarding the functional form, Legendre
polynomial and normal polynomial are considered to reproduce the essential infor-
mation of the rotational curves.

This paper is organised as follows: Section 2 summarises theRelated Work and
previous efforts done. In Section 3, the Evolutionary Algorithms used in this article
are briefly described. In Section 4, the details of the implementation and the Pro-
duction Setup are shown. The Results and the Analysis are displayed in Section 5.
And finally, the Conclusions and the Future Work are presented in Section 6.

2 Related Work

In the bibliographic search, few related studies have been found. It exists an old
work which has inspired partially this survey. In this work,the author used a ge-
netic algorithm to adjust the observational data of the spiral galaxy NGC 6946 [1].
Instead of using a physical meaningless, the author uses an equation with physical
meaning describing the four mass contributions to the rotation curve —bulge, disk,
interstellar gas and halo— (Eq. 1).

v2(r) = v2
D(r) + v2

B(r) + v2
H(r) + v2

G(r) (1)

Except for the halo, the other three contributions are merged in a variable,
whereas the halo contribution is modelled by the Eq. 2. Therefore, the number of
parameters to adjust is only three.

v2
H(r) = 2·σ2

· (1− (
r
α

) · tang−1(
α
r

)) (2)

In spite of the similarities —the application of a Genetic Algorithm to fit a data
set—, the target of this work is very different. Whereas in [1] the focus is clearly on
the physical behaviour of the rotation; in the present work,our study focuses on the
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extraction of the essential information of the curves involved in order to produce a
universal curve.

3 Evolutionary Algorithms

EAs are stochastic search methods which maintain a population of tentative so-
lutions that are manipulated competitively by applying some variation operators to
find satisfactory solutions. The skeleton of a standard EA isas follows: EA proceeds
in an iterative manner by generating new populationsP(t) of individuals from the
former population, every individual in the population is the encoded version of a ten-
tative solution, an evaluation function associates a fitness value to every individual
indicating its suitability to the problem, the canonical algorithm applies stochastic
operators in order to compute a whole generation of new individuals. In a general
formulation, variation operators to create a temporary populationP’(t) are applied.
Next, the resulting individuals are evaluated. Finally, a new populationP(t+1) is
obtained by using individuals fromP’(t) or P(t).

In all the EAs used in this work, the population structure is panmictic. Thus,
the intrinsic operations to each EA take place globally overthe whole population.
Furthermore, in all cases the EAs follow a generational model, in which an entire
new population of individualsP’(t) replaces the old oneP(t) [2].

3.1 Particle Swarm Algorithm

In PSO initially, a set of particles are randomly created. During the process of par-
ticles movement, each particle keeps track of its coordinates in the problem space
that are associated with the best solution it has achieved sofar. Not only the best
historical position of each particle is kept, also the associated fitness is stored. This
value is calledlocalbest.

Another ”best” value that is tracked and stored by the globalversion of the par-
ticle swarm optimiser is the overall best value, and its location, obtained so far by
any particle in the population. This location is calledglobalbest.

The PSO [3], [4], [5] concept consists of, at each time step, changing the veloc-
ity (accelerating) of each particle toward itslocalbestand theglobalbestlocations
(in the global version of PSO). Acceleration is weighted by arandom term, with
separate random numbers being generated for acceleration toward localbestand
globalbestlocations.

The process for implementing the global version of PSO is as follows:

1. Creation of a random initial population of particles. Each particle has a position
vector and a velocity vector on N dimensions in the problem space.

2. Evaluation of the desired (benchmark function) fitness inN variables for each
particle.
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3. Comparison of each particle fitness function with itslocalbest. If the current
value is better than the recordedlocalbest, it is replaced. Additionally, if replace-
ment occurs, the current position is recorded aslocalbest position.

4. For each particle, comparison of the present fitness with the global best fitness,
globalbest. If the current fitness improves theglobalbestfitness, it is replaced,
and the current position is recorded asglobalbest position.

5. Updating the velocity and the position1 of the particle according to Eqs. 3 and 4:

vid(t +δ t)← vid(t)+c1 ·Rand() ·(xlocalbest
id −xid)+c2 ·Rand() ·(xglobalbest

id −xid)
(3)

xid(t +δ t)← xid(t)+vid (4)

6. If an end execution criterion —fitness threshold or number of generations— is
not met, back to the step number 2.

In the implementation of PSO algorithm, thec1 andc2 constants were established
as c1 = c2 = 1 and the maximum velocity of particlesVmax = 2 [4], being these
values the most typical ones. The rest of the configuration used is: 100 particles as
population size and 5,000 cycles.

3.2 Differential Evolution

DE was proposed by Storn and Price [6], [7] in 1997. It is a non-deterministic tech-
nique based on the evolution of a population of individuals representing candidate
solutions. The generation of new individuals is carried outwith two operators: mu-
tation and recombination.

Mutation adds the proportional difference between two randomly-selected indi-
viduals to a third individual (also randomly-selected). With these three randomly-
selected and different individuals:v1, v2 andv3, a new individualwi —termedmu-
tant vector— is generated using Eq. 5.

wi = v1 + µ · (v2−v3) (5)

whereµ is themutation rate.
After the mutation operator, a second operator —termedrecombination oper-

ator— is executed. A recombination on each individualvi (target individual) to
generate a trial individualui is performed. The trial vector,ui , is constructed mixing
wi andvi individuals, Eq. 6, under a predefinedrecombination rate, Cr ∈ [0,1]; or if
the equalityj = jr is met —beingj an integer random numberj ∈ [1,D].

1 Apparently, in Eq. 3, a velocity is added to a position. However, this addition occurs over a single
time increment (iteration), so the equation keeps its coherency.
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ui( j) =

{

wi( j) if rand≤Cr or j = jr ;
vi( j) otherwise.

(6)

Finally theselector operatordecides, based on the improvement of the fitness,
whether the trial individual is accepted, and then replacesthe target vector, or the
trial individual is rejected, and then the target vector remains in the next generation.

In the implementation of DE algorithm, the mutation rate wasestablished as
µ = 0.5 and the recombination rate asCr = 0.5, being these values the most typical
ones in the literature [6]. The rest of the configuration usedis: 100 particles as
population size and 5,000 cycles.

4 Production Setup

Diverse serial expansions were tested to fit the experimental data to the theoretical
physical-meaningless curve. In spite of the equal a priori capacity, the Legendre
polynomial —50 degrees in all serial expansions— serial expansion showed a major
sensitiveness to reproduce the data behaviour and producedthe lowest values of the
fitness function.

According to the usual practice in adjustment of experimental data to theoretical
curve, the chi-square test —χ2—- has been chosen in this work [8] as fitness func-
tion. The lower theχ2 value is, the closer the solution is to the objective —the fitter
experimental data is to the theoretical curve—. Thus, the aimis to minimiseχ2.

Considering a standard fitting problem, where one is given a discrete set of N
data points with associated measured errorsσ , and is asked to construct the best
possible fit to these data using a specific functional form forthe fitting function, the
most appropriated fitness function is the merit functionχ2, Eq. 7 [9]. Therefore,
independently of the specific functional form chosen, the fitness function used in
this work isχ2, Eq. 7.

χ2 = ∑
f or all points

(
ysimulated−yobserved

σobserved
)2 (7)

For each case —each EA and type of polynomial— a total of 25 tests were exe-
cuted in order to reach the desired statistical relevance.

As pseudorandom number generator, a subroutine based on Mersenne Twister
has been used [10].

In order to fairly compare the curves of the galaxies, a double normalization has
been applied. First of all, the size of the galaxies has to be homogenized. For this
normalization, the radius where the maximum velocity is reached is settled —in
arbitrary units— at 0.1 units. Consequently, all the radii measured for the galaxy
under modification are conveniently scaled.

Second of all, the maximum velocity of each galaxy is settledat 1 —in arbi-
trary units—-. As consequence, the rest of measured velocities are also appropri-
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ately scaled. Finally, resulting of the scaling in velocities, the velocity error must be
rescaled proportionately to the velocity associated.

As result of this double normalization, all the curves have acommon coordinate
at (0.1, 1). Once the normalization process has proceeded, the extraction of a pattern
representing all the curves can be executed. In Fig. 1 two figures are presented: in the
left figure the complete observational data set, and in the right the data without the
error bars. Particularly, the galaxy rotation curves used in this work were extracted
from a large astronomical data set [11], covering approximately 60 galaxies, being
involved a total of 5051 points.

5 Results and Analysis

It is well known in Evolutionary Computing that it is not possible to know a priori
which EA will perform the best for a particular problem. For this reason, optimiza-
tion problems are treated with a variety of techniques, retaining the best ones for
further improvements.

In Fig. 2 —left— the comparative box plots of the best results for the algorithms
PSO and DE are presented. As can be appreciated the PSO algorithm performs better
than DE, in both: the absolute best result obtained after the25 test, as well as the
median of the samples. Therefore, the use of DE will be rejected for this problem.

The application of the Wilcoxon signed-rank test [12] to thedata shown in the
left panel of Fig. 2 indicates that the differences are significant from the statistical
point of view forα = 0.05.

In Fig. 2 —right— the evolution of the best result for each casestudied is pre-
sented. In this figure, the evolution of PSO with Legendre polynomial can distin-
guished from the other cases by the rapid evolution during the first half of gener-
ations. However, for the second half the fitness evolution stagnates. The other two
cases show a lower ability to evolve along the generations.
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Fig. 1 All rotation curves doubly normalized. Panel (a, left) shows data with errorbars, while panel
(b, right) without errorbars
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In Fig. 3, two views of the absolute best result —the fittest solution to the ob-
servational data— are presented. As can be appreciated in the general view —left
in Fig. 3—, the adjustment is far from the optimum for values ofnormalized radii
higher than 0.2. This value corresponds to the double of the radius where the ve-
locity reaches its maximum value. In this range [0.2, 1.0] few observational data
exist, therefore, it is more difficult to fit accurately the functional form to the data.
Probably the own nature of the Polynomial of Legendre, producing oscillation for
these values, deteriorates the final result impeding finer adjustment.

On the contrary, in the inner segment [0, 0.2], the main part of the observational
data are concentrated, and thus a better adjustment is expected. The observation of
the area where most of the data are concentrated [0,0.2] —right in Fig. 3— shows
an excellent adjustment to the observational data. As is appreciated, the functional
form chosen accurately adjusts the observational data.
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Fig. 2 Panel (a, left) shows the comparative box plots for the best results obtained for PSO and
DE algorithms, while panel (b, right) shows the fitness evolutionfor the best result of each case
studied

�0.5 0.0 0.5 1.0 1.5 2.0 2.5
�10�505
10

15

20

0.00 0.05 0.10 0.15 0.20 0.25

�0.50.0

0.5

1.0

1.5

Fig. 3 Absolute best result —the fittest adjustment to observational data—obtained. Configuration
used PSO with configuration of 100 particles and 5,000 cycles, and a series of Legendre Polyno-
mials of 50 degrees. Panel (a, left) shows a general view, while panel (b, right) shows a closer view
of the smaller radii
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It can be concluded that a high-quality adjustment is produced in the area cor-
responding to the smaller radii [0, 0.2], being the adjustment less optimum for the
external segment [0.2, 1.0].

6 Conclusions and Future Work

This paper deals with the use of Evolutionary Algorithms to adjust observational
data —rotational curves of spiral galaxies— to specific functional forms. The nu-
merical experiments performed show that PSO algorithm obtains more accurate re-
sults than DE algorithm. In general, the results obtained demonstrate the effective-
ness of the application of Evolutionary Algorithms to cope with the extraction of
essential information from huge volume of astronomical andastrophysical observa-
tional data.

The natural forthcoming step is to implement the population-diversification
mechanisms necessary to avoid the stagnation of the fitness evaluation. Besides,
the method to generate the initial population will be revisited, replacing the random
generator by low-discrepancy numbers sequences generator. Finally, the checking
of other EAs, as well as other functional forms to generate a fitter adjustment will
be taken into account.
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